Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mining Sciences

The Journal of Committee of Mining of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.550
5-year IMPACT FACTOR: 0.610

CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.320
Source Normalized Impact per Paper (SNIP) 2016: 0.950

Open Access
See all formats and pricing
More options …

A Computer-aided Application for Modeling and Monitoring Operational and Maintenance Information in Mining Trucks

Christopher Nikulin
  • Universidad Técnica Federico Santa María, Carrera de Ingenieria en Diseño de Productos Av España 1680, Valparaíso, Chile.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andres Ulloa / Carlos Carmona / Werner Creixell
  • Universidad Técnica Federico Santa María, Carrera de Ingenieria Civil Telematica, Av. España 1680, Valparaíso, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/amsc-2016-0048


The combination of maintenance planning and key performance indicators are relevant to create a more holistic scenario of the mining activities. On the one hand, reliability and maintainability are system characteristics suitable for planning maintenance strategies. On the other hand, key performance indicators are suitable to analyze cost and resource consumption information about mining equipment. Nevertheless in practice, both approaches are modeled separately and frequently by different team-works of a mining company. With this in mind, a computer-aided application was conceived to drive with better efficacy the operational and maintenance strategy in a complex process where the equipment is in continuous movement such as the transportation process in an open-mine pit.

Keywords: Reliability; Maintainability; Computer-aided application


  • Barberá L., Crespo A., Viveros P., Stegmaier R., 2014. A case study of GAMM (Graphical Analysis for Maintenance Management) applied to water pumps in a sewage treatment plant, Chile. Quality and Reliability Engineering International, 30(8), 1473-1480. DOI: 10.1002/qre.1549.CrossrefGoogle Scholar

  • Bartos P.J., 2007. Is mining a high-tech industry? Investigations into innovation and productivity advance. Resources Policy, 3, 149–158. DOI: 10.1016/j.resourpol.2007.07.001.CrossrefGoogle Scholar

  • Becattini N., Cascini G., 2013. Mapping Causal Relationships and Conflicts among Design Parameters and System Requirements. Computer-Aided Design and Applications, 10(4), 643-662. DOI: 10.3722/cadaps.2013.643-662.CrossrefGoogle Scholar

  • Becattini N., Borgianni Y., Cascini G., Rotini F., 2012. Model and algorithm for computer-aided inventive problem analysis. Computer-Aided Design, 44(10),961-986. DOI: 10.1016/j.cad.2011.02.013.CrossrefWeb of ScienceGoogle Scholar

  • Chew S.P., Dunnett S.J., Andrews J.D., 2008. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets. Reliability Engineering & System Safety, 93(7), 980-994. DOI: 10.1016/j.ress.2007.06.001CrossrefGoogle Scholar

  • CORFO, Mining Cluster in Chile-2010, available on-line at www.unido.org, last accessed January 2015.

  • Gabbar H.A., Yamashita H., Suzuki K., Shimada Y., 2009. Computer-aided RCM-based plant maintenance management system. Robotics and Computer-Integrated Manufacturing, 19(5), 449-458. DOI: 10.1016/S0736-5845(03)00031-0.CrossrefGoogle Scholar

  • Garay V., Schwarz S., Donoso F., 2012. Informe Tendencias Mercado del Cobre-Balance 2011 y Perspectivas 2012-2013. COLCHICO-Dirección de estudios y politicas públicas.Google Scholar

  • Gharbi A., Kenné J.P., Beit M., 2007. Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems. International Journal of Production Economics, 10(2), 422-434. DOI: 10.1016/j.ijpe.2006.09.018.CrossrefGoogle Scholar

  • Goldratt E., 1992. The goal: a process of ongoing improvement. North River Press, Great Barrington, Massachusetts. ISBN-10: 0566074176.Google Scholar

  • Hilson G., 2000. Barriers to implementing cleaner technologies and cleaner production (CP) practices in the mining industry: a case study of the Americas. Minerals Engineering, 13(7), 699-717. DOI: 10.1016/S0892-6875(00)00055-8.CrossrefGoogle Scholar

  • Iung B., Marquez A.C., 2006. Special issue on e-maintenance. Computers in Industry, 57(6): 473-475. DOI: 10.1016/j.compind.2006.02.016.CrossrefGoogle Scholar

  • Jardine A.K., Lin D., Banjevic D., 2006. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510. DOI: 10.1016/j.ymssp.2005.09.012.CrossrefGoogle Scholar

  • Kahn J., Klemme-Wolf H. Overview of MIMOSA and the open system architecture for enterprise application integration. [In:] Proc. of COMADEM, p. 661-670.Google Scholar

  • López-Campos M.A., Márquez A.C., Fernández J.F. G., 2013. Modelling using UML and BPMN the integration of open reliability, maintenance and condition monitoring management systems: An application in an electric transformer system. Computers in Industry, 64(5), 524-542. DOI: 10.1016/j.compind.2013.02.010.CrossrefGoogle Scholar

  • Macchi M., Kristjanpoller F., Garetti M., Arata A., Fumagalli L., 2012. Introducing buffer inventories in the RBD analysis of process production systems. Reliability Engineering & System Safety, 104, 84-95. DOI: 10.1016/j.ress.2012.03.015.CrossrefGoogle Scholar

  • Meller R.D., Kim D.S., 1996. The impact of preventive maintenance on system cost and buffer size. European Journal of Operational Research, 95(3), 577-591. DOI: 10.1016/0377-2217(95)00313-4.CrossrefGoogle Scholar

  • Miller G.A., 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81-97.CrossrefGoogle Scholar

  • Muller A., Marquez A.C., Iung B., 2008. On the concept of e-maintenance: Review and current research. Reliability Engineering & System Safety, 93(8): 1165-1187. DOI: 10.1016/j.ress.2007.08.006.CrossrefGoogle Scholar

  • Peterson D.J., LaTourrette T., Bartis J.T., 2001. New Forces at Work in Mining Industry: Views of Critical Technologies. Monograph/Reports, available on-line at www.rand.org, last accessed January 2015.

  • Rábago K.R., Lovins A.B., Feiler T.E., 2001. Energy and sustainable development in the mining and minerals industries. IIED report, available on line at www.iied.org, last accessed January 2015.

  • S.A. P. M., 2006. Manual General de Minería y Metalurgia. Antofagasta: Portal Minero Ediciones (In Spanish). ISBN: 9568514015.Google Scholar

  • Sustainable Development Strategies Group, Report-2010: current issues in the Chilean mining sector, available on-line at www.sdsg.org, last accessed January 2015.

  • Tilton J.E., Landsberg H.H., 1999. Innovation, productivity growth, and the survival of the US copper industry. Productivity in Natural Resource Industries; Improvement through Innovation, 109-139.Google Scholar

  • Tsang A.H., 1995. Condition-based maintenance: tools and decision making. Journal of Quality in Maintenance Engineering, 1(3), 3-17. DOI: 10.1108/13552519510096350.CrossrefGoogle Scholar

  • Tulcanaza E., Ferguson G., 2001. The value of information: a guide to the strategic development of projects founded on mineral resource categorization. Transactions of the institution of mining and metallurgy section b-applied earth science; 110, b126-b135. DOI: 10.1179/aes.2001.110.3.126CrossrefGoogle Scholar

  • Viveros P., Zio E., Kristjanpoller F., Arata A., 2012. Integrated system reliability and productive capacity analysis of a production line. A case study for a Chilean mining process. Proc. IMechE, Part O: J. Risk Reliability, 226(3), 305-317, DOI: 10.1177/1748006X11408675.CrossrefGoogle Scholar

  • Viveros P., Crespo A., Kristjanpoller F., Stegmaier R., Johns E., Gonzalez-Prida V., 2014. Probabilistic performance assessment for crushing system. A case study for a mining process. Probabilistic Safety Assessment and Management PSAM 12, June, Honolulu, Hawaii.Google Scholar

  • Warhurst A. Bridge G,. 1996. Improving environmental performance through innovation: recent trends in the mining industry. Minerals Engineering, 9(9), 907-921. DOI: 10.1016/0892-6875(96)00083-0.CrossrefGoogle Scholar

  • Zio E., 2009. Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, 94(2), 125-141. DOI: 10.1016/j.ress.2008.06.002.CrossrefGoogle Scholar

About the article

Published Online: 2016-10-18

Published in Print: 2016-09-01

Citation Information: Archives of Mining Sciences, ISSN (Online) 1689-0469, DOI: https://doi.org/10.1515/amsc-2016-0048.

Export Citation

© 2016 Archives of Mining Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in