Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
See all formats and pricing
More options …

Sensorless compensation system for thermal deformations of ball screws in machine tools drives

Michał Kowal
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/amtm-2016-0001


The article presents constructional, technological and operational issues associated with the compensation of thermal deformations of ball screw drives. Further, it demonstrates the analysis of a new sensorless compensation method relying on coordinated computation of data fed directly from the drive and the control system in combination with the information pertaining to the operational history of the servo drive, retrieved with the use of an artificial neural networks (ANN)-based learning system. Preliminary ANN-based models, developed to simulate energy dissipation resulting from the friction in the screw-cap assembly and convection of heat are expounded upon, as are the processes of data selection and ANN learning. In conclusion, the article presents the results of simulation studies and preliminary experimental evidence confirming the applicability of the proposed method, efficiently compensating for the thermal elongation of the ball screw in machine tool drives.

Keywords: Ball screws; Thermal compensation; Machine tools


  • [1] A.S. Yang, S.Z. Cai, S.H. Hsieh, T.C. Kuo, C.C. Wang, W.T. Wu, W.H. Hsieh, Y.C. Hwang, Thermal deformation estimation for a hollow ball screw feed drive system, Proceedings of the World Congress on Engineering, Vol. III (2013), London, U.K.Google Scholar

  • [2] W. Ptaszyński, R. Staniek, Badanie silnika liniowego w suporcie poprzecznym zataczarki, Archiwum Technologii Maszyn i Automatyzacji, 28 (2) (2008) 117-127 (in Polish).Google Scholar

  • [3] W.S. Yun, S.K. Kim, D.W. Cho, Thermal error analysis for a CNC lathe feed-drive system, Int. J. Mach. Tool Manu., 39 (1999) 1087-1101.CrossrefGoogle Scholar

  • [4] J. Bryan, International status of thermal error research, Ann. CIRP 39 (2) (1990) 645-656.Google Scholar

  • [5] R. Ramesh, M.A. Mannan, A.N. Po, Thermal error measurement and modeling in machine tools. Part I. Influence of varying operation conditions, Int. J. Mach. Tool Manu., 43 (2003) 391-404.CrossrefGoogle Scholar

  • [6] M. Kowal, R. Staniek, Compensation system for thermal deformation of ball screws, Proceedings of the 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 20469 (2014) Copenhagen, Denmark.Google Scholar

  • [7] J. Olszewski, W. Ptaszyński, R. Staniek, Investigation of thermal deformations and their compensation in CTX 210 V3 lathe slide, Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA 59354 CD, ISBN 0-7918-3827-7 (2008) Haifa, Israel.Google Scholar

  • [8] R. Staniek, Compensation methods of thermal deformations in NC machine tool bodies, Proc.eedings of the 5th International Carpathian Control Conference ICCC, Vol. 2, (2004) 189-195, Zakopane, Poland.Google Scholar

  • [9] M. Pajor, J. Zapłata, Compensation of thermal deformations of the feed screw in a CNC machine tool, Advances in Manufacturing Science and Technology, Vol. 35, No. (4), (2011) 9-17.Google Scholar

  • [10] C.-F. Chang, C.-C. Wang, C.-S. Lin, C.-Y, Chao, and T.-R. Chen., A theory of ball-screw thermal compensation, Proceedings of the International Multi-Conference of Engineers and Computer Scientists 2009, Vol. II IMC (2009).Google Scholar

  • [11] Solution for heating of ball screw and environmental engineering, World Manufacturing Engineering and Market , 3 (2004) 65-67.Google Scholar

  • [12] A. Verl, S. Frey, Correlation between feed velocity and preloading in ball screw drives, Ann. CIRP 59(2) (2010) 429-432.Web of ScienceGoogle Scholar

  • [13] T. A. Harris, Rolling Bearing Analysis, Wiley & Sons, New York, (1991), 540-560.Google Scholar

  • [14] L. Rutkowski, Metody i Techniki Sztucznej Inteligencji, WTN, Warszawa (2006) (in Polish).Google Scholar

  • [15] J. Szargut, Termodynamika, PWM Warszawa (1998) (in Polish ).Google Scholar

  • [16] J. Mayr, J. Jedrzejewski, E. Uhlmann, M.A. Donmez, W. Knapp, F. Heartig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Weurz, K. Wegener, Thermal issues in machine tools, Ann CIRP - Manufacturing Technology , 61 (2012) 771-791.Google Scholar

About the article

Received: 2016-12-12

Revised: 2016-02-26

Accepted: 2016-03-03

Published Online: 2016-12-30

Published in Print: 2016-12-01

Citation Information: Archives of Mechanical Technology and Materials, Volume 36, Issue 1, Pages 1–6, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2016-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in