Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
See all formats and pricing
More options …

Laser borided composite layer produced on austenitic 316L steel

Daria Mikołajczak / Michał Kulka / Natalia Makuch
Published Online: 2016-12-30 | DOI: https://doi.org/10.1515/amtm-2016-0007


Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides) and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

Keywords: laser boriding; austenitic steel; microstructure; hardness; wear resistance


  • [1] Glaeser W.A., Materials for Tribology, Tribology Series, 20,Elsevier, 1992.Google Scholar

  • [2] Skołek-Stefaniszyn E., Kaminski J., Sobczak J., Wierzchoń T., Modifying the properties of AISI 316L steel by glow discharge assisted low-temperature nitriding and oxynitriding, Vacuum 85 (2010) 164-169.Web of ScienceGoogle Scholar

  • [3] Skołek-Stefaniszyn E., Burdynska S., Mroz W., Wierzchoń T., Structure and wear resistance of the composite layers produced by glow discharge nitriding and PLD method on AISI 316L austenitic stainless steel, Vacuum 83 (2009) 1442-1447.Web of ScienceGoogle Scholar

  • [4] Li Y., Wang Z., Wang L., Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Applied Surface Science 298 (2014) 243-250.Web of ScienceGoogle Scholar

  • [5] Frączek T., Olejnik M., Jasiński J., Skuza Z., Short-term lowtemperature glow discharge nitriding of 361L austenitic steel, Metalurgija 50 (3) (2011) 151-154.Google Scholar

  • [6] Sun Y., Li X., Bell T., Structural characteristics of low temperature plasma carburised austenitic stainless steel, Materials Science and Technology 15 (1999) 1171-1178.Google Scholar

  • [7] García Molleja J., Nosei L., Ferrón J., Bemporad E., Lesage J., Chicot D., Feugeas J., Characterization of expanded austenite developed on AISI 316L stainless steel by plasma carburization, Surface and Coatings Technology 204 (2010) 3750-3759.Google Scholar

  • [8] Ceschini L., Chiavari C., Lanzoni E., Martini C., Lowtemperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behavior, Materials and Design 38 (2012) 154÷160.Google Scholar

  • [9] Sun Y., Tribocorrosion behavior of low temperature plasma carburized stainless steel, Surface and Coatings Technology 228 (2013) S342-S348.Google Scholar

  • [10] Ozdemir O., Omar M.A., Usta M., Zeytin S., Bindal C., Ucisik A.H., An investigation on boriding kinetics of AISI 316 stainless steel, Vacuum 83 (2009) 175-179.Web of ScienceGoogle Scholar

  • [11] Balusamy T., Sankara Narayanan T.S.N., Ravichandran K., Park I.S., Lee M.H., Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel, Surface & Coatings Technology 232 (2013) 60-67.Google Scholar

  • [12] Kayali Y., Büyüksagis A., Yalçin Y., Corrosion and Wear Behaviors of Boronized AISI 316L Stainless Steel, Metals and Materials International 19 (5) (2013) 1053-1061.Google Scholar

  • [13] Major B., Chapter 7: Laser processing for surface modification by remelting and alloying of metallic systems in “Materials Surface Processing by Directed Energy Techniques” Edited by Yves Paleau, Elsevier (2006).Google Scholar

  • [14] Goły M., Kusiński J., Microstructure and properties of the laser treated 30CrMnMo16-8 chromium steel, in: Problems of modern techniques in aspect of engineering and education, eds.: Paweł Kurtyka [et al.], Monography, Pedagogical University.Cracow. Institute of Technology (2006) 183-188.Google Scholar

  • [15] Bartkowiak K., Waligóra W., Laser alloying of the construction steel 45 with boron. The scientific conference with foreign participation, TRANSFER 2001, Trenčin, Slovak Republic, 23-24 October 2001, 175-180.Google Scholar

  • [16] Kulka M., Makuch N., Pertek A., Microstructure and properties of laser-borided 41Cr4 steel. Optics & Laser Technology 45 (2013) 308-318.Google Scholar

  • [17] Paczkowska M., Ratuszek W., Waligora W., Microstructure of laser boronized nodular iron. Surf. Coat. Technol. 205 (2010) 2542÷2545.Web of ScienceGoogle Scholar

  • [18] Filip R., Sieniawski J., Pleszakov E., Formation of surface layers on Ti-6Al-4V titanium alloy by laser alloying. Surf. Eng. 22(1) (2006) 53÷57.CrossrefGoogle Scholar

  • [19] Tian Y.S., Zhang Q.Y., Wang D.Y., Study on the microstructures and properties of the boride layers laser fabricated on Ti-6Al-4V alloy. J. Mater. Process. Technol. 209 (2009) 2887-2891.Web of ScienceGoogle Scholar

  • [20] Guo C., Zhou J., Zhao J., Guo B., Yu Y., Zhou H., Chen J., Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Appl. Surf. Sci. 257 (2011) 4398-4405.Web of ScienceGoogle Scholar

  • [21] Kulka M., Makuch N., Dziarski P., Piasecki A., Miklaszewski A., Microstructure and properties of laser-borided composite layers formed on commercially pure titanium, Optics and Laser Technology 56 (2014) 409÷424.Google Scholar

  • [22] Kulka M., Dziarski P., Makuch N., Piasecki A., Miklaszewski A., Microstructure and properties of laser-borided Inconel 600- alloy, Applied Surface Science 284 (2013) 757-771.Google Scholar

  • [23] Kulka M., Makuch N., Dziarski P., Piasecki A., A study of nanoindentation for mechanical characterization of chromium and nickel borides' mixtures formed by laser boriding, Ceramics International 40(4) (2014) 6083-6094.Web of ScienceCrossrefGoogle Scholar

  • [24] Kwok C.T., Cheng F.T., Man H.C., Laser-fabricated Fe-Ni-Co-Cr-B austenitic alloy on steels. Part I. Microstructures and cavitation erosion behavior, Surface and Coatings Technology 145 (2001) 194-205.Google Scholar

  • [25] Kim T.H., Kim B.C., Chromium carbide laser-beam surfacealloying treatment on stainless steel, Journal of Materials Science 27 (1992) 2967-2973.Google Scholar

  • [26] Kulka M., Mikołajczak D., Makuch N., Dziarski P., Laser alloying of 316L steel with boron, Inżynieria Materiałowa 6 (2014) 512-515 Google Scholar

About the article

Received: 2016-02-15

Revised: 2016-06-16

Accepted: 2016-06-22

Published Online: 2016-12-30

Published in Print: 2016-12-01

Citation Information: Archives of Mechanical Technology and Materials, Volume 36, Issue 1, Pages 35–39, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2016-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in