Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
See all formats and pricing
More options …

Reproducibility of machine tools’ circularity test according to ISO 230-4 with respect to testing position

Monika Woźniak
  • Corresponding author
  • Paweł Majda a a West Pomeranian University of Technology, Faculty of Mechanical Engineering, Institute of Manufacturing Engineering, Al. Piastów 19, 70-310 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Majda
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering, Institute of Manufacturing Engineering, Al. Piastów 19, 70-310 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-04 | DOI: https://doi.org/10.1515/amtm-2017-0003


In this paper circularity of three different machine tools by Virtual Machine was analyzed. To get circularity we make a ball bar test according to ISO 230-4. The test is very common in engineering for a quick diagnostic Computerized Numerical Control (CNC) technical conditions. We implemented earlier calculations of Volumetric Error in our Virtual Machine. Then we simulated testing of circularity of CNC machine tools. The place to take the test was chosen randomly from Uniform Distribution in three different kinds of machine tools. Those machines had different characteristics of kinematic errors and squareness and also different sizes of working space. We observed significant differences in the indicator (circularity) depending on the place where the test was taken. Moreover we showed that there was no reason to take the test in the center of working table.

Keywords: circularity; volumetric error; ball bar test; machine tool


  • [1] Hughes E.B., Wilson A., Peggs G.N., Design of a High- Accuracy CMM Based on Multi-Lateration Techniques, CIRP Annals - Manufacturing Technology, 49 (2000), 391-400.Google Scholar

  • [2] Majda P., Modelowanie i eksperymentalna ocena dokładności przestrzennego pozycjonowania zespołów posuwowych obrabiarek sterowanych numerycznie, ZAPOL, Szczecin 2012.Google Scholar

  • [3] Józwik J., Pieśko P., Krajewski G., Evaluation of QC10 Ballbar diagnostics method for CNC machine, Maintenance and Reliability, , 3(47) (2010), 10-20.Google Scholar

  • [4] Weck M., Mckeown A., Bonse R., Herbst U.: Reduction and Compensation of Thermal Errors in Machine Tools, CIRP Annals - Manufacturing Technology, 44 (1995) 2, 589-598.CrossrefGoogle Scholar

  • [5] ISO 230-4:2005 Test code for machine tools -- Part 4: Circular tests for numerically controlled machine toolsGoogle Scholar

  • [6] Florussen G.H.J., Spaan H.A.M.:Dynamic R-Test for Rotary Tables on 5-Axes Machine Tools, Procedia CIRP, 1 (2012), 536-539.Google Scholar

  • [7] Wang J., Guo J., Zhang G., Guo B., Wang H.: The technical method of geometric error measurement for multi-axis NC machine tool by laser tracer, Measurement Science and Technology, 23 (2012), 045003.Google Scholar

  • [8] Liu, H.L., Shi H.M., Li B., Li X., A new method and instrument for measuring circular motion error of NC machine tools, International Journal of Machine Tools & Manufacture 45 (2005) 1347-1351.Google Scholar

  • [9] Jastrzębski R., Kowalski T., Osówniak P., Szepke A., Wykrywanie błędów montażu precyzyjnych szybkoobrotowych wrzecion obrabiarek, Technologia i Automatyzacja Montażu, 3 (2011), 46-52.Google Scholar

  • [10] Lei W.T., Paung I.M., Chen-Chi Yu: Total ballbar dynamic tests for five-axis CNC machine tools, International Journal of Machine Tools & Manufacture 49 (2009) 488-499.Google Scholar

  • [11] Pahk H. J., Kim S. Y., Moon J.H.A new technique for Volumetric Error assessment of CNC machine tools incorporating Ball Bar measurement and 3D Volumetric Error model, International Journal of Machine Tools and Manufacture, 37 (1997), 1583-1596.Google Scholar

  • [12] Altintas Y., Brecher C., Weck M., Witt S.Virtual Machine Tool, CIRP Annals - Manufacturing Technology, 54 (2005) 2, 115-138.CrossrefGoogle Scholar

  • [13] Altintas Y., Cao Y. Virtual Design and Optimization of Machine Tool Spindles, Annals of the CIRP, 54 (1) (2005).Google Scholar

  • [14] Armarego E.J.A., Whitfield R.C., Computer Based Modelling of Popular Machining Operations for Force and Power Predictions, Annals of the CIRP, 34 (1) (1985), 65-69.Google Scholar

  • [15] Gomez C. A. S., Castiblanco L. E. G. Osorio J. M. A. Building a virtual machine tool in a standard PLM platform, Int J Interact Des Manuf, 2016.Google Scholar

About the article

Received: 2016-12-19

Revised: 2017-03-23

Accepted: 2017-03-27

Published Online: 2017-04-04

Published in Print: 2017-01-26

Citation Information: Archives of Mechanical Technology and Materials, Volume 37, Issue 1, Pages 22–26, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in