Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
Online
ISSN
2450-9469
See all formats and pricing
More options …

Diagnostic methods of detecting defects within the material with the use of active infrared thermovision

Karol Grochalski
  • Corresponding author
  • Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3 Street, 60-965 Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Peta
  • Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3 Street, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/amtm-2017-0006

Abstract

Article presents the methods of detecting defects within material with the use of active infrared thermovision. During the study ABS and PVC samples were used inside which internal structure defects and defects of glue conjunction between components were modeled. During combining composite materials with the use of glue joints, there is a problem with homogenous distribution of the glue layer on the surface of an element, which results in the creation of defects in joint structure and the decline of active surface of adhesion forces on the combined materials. It is then necessary to control the quality of the conjunction between the glued surfaces. The use of non-contact diagnostic methods allows to analyze a larger surface which conditions in more efficient quality control process. In the study, external heat excitation was used - optical excitation with periodic variable signal (LockIn method) and unit step excitation (Pulse method). The methods of analysis of the obtained thermograms are presented.

Keywords: Active thermovision External forcing heat Thermal images analysis Diagnostic Detection of defects within the material

References

  • [1] Więcek B., De Mey G.; „Termowizja w podczerwieni. Podstawy i zastosowania”, Wydawnictwo PAK, 2011,Google Scholar

  • [2] Kostowski E.; Przepływ ciepła, Wydawnictwo Politechniki Śląskiej, 2006,Google Scholar

  • [3] Liu J., Gong J., Qin L., Wang Y Y.; „Study on lock-in thermography defect detectability for carbon-fiberreinforced polymer (CFRP) sheet with subsurface defects”, Int J Thermophys, Vol. 36(5-6), 1259-65, 2015,Google Scholar

  • [4] Liang T., Ren W., Tian G Y., Elradi M., Gao Y.;Low energy impact damage detection in CFRP using eddy current pulsed thermography, Composite Structures, Vol. 143, 352-61, 2016,Google Scholar

  • [5] http://www.visiooimage.com (18.03.2017),Google Scholar

  • [6] Szczepanik M., Stabik J., Wróbel G., Wierzbicki Ł.; Wykorzystanie systemów termowizyjnych do badań materiałów polimerowych, Modelowanie Inżynierskie T. 5, nr 36, s. 279-286, 2008,Google Scholar

  • [7] Szczygieł I.; Konwekcyjny przepływ ciepła, Wydawnictwo Politechniki Śląskiej, 2013.Google Scholar

About the article

Received: 2017-04-04

Revised: 2017-05-15

Accepted: 2017-05-17

Published Online: 2017-05-31

Published in Print: 2017-01-26


Citation Information: Archives of Mechanical Technology and Materials, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in