Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
See all formats and pricing
More options …

The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive

Katarzyna Peta
  • Corresponding author
  • Institute of Mechanical Technology,Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karol Grochalski
  • Institute of Mechanical Technology,Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Piasecki
  • Institute of Materials Science and Engineering,Poznan University of Technology, Jana Pawła II nr 24 Address, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Żurek
  • Institute of Mechanical Technology,Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/amtm-2017-0007


In the work, the most important factors which influence on the exploitative durability of heat exchangers are classified. Particular attention was paid to the compounds of sodium chloride used in the winter season for road maintenance. In order to determine their impact on automotive heat exchanger corrosion resistance, a test of heaters in a salt chamber which imitates the conditions of their work was realized. It also allows to verify the durability of these products. To evaluate the corrosion changes, observation with the use of light microscopy and scanning microscopy SEM were made supplemented with microanalysis of chemical composition by EDS spectroscopy method. Critical areas in the heat exchangers which are mostly exposed to damage including the formation of local corrosion pits were located and analyzed.

Keywords: brazed joints; aluminum alloys; heat exchangers; corrosion; salt fog


  • [1] Thulukkanam K., Heat Exchanger Design Handbook. Second Edition, CRC Press, Boca Raton, 2013.Google Scholar

  • [2] Kim H., Lee S., Effect of a brazing process on mechanical and fatigue behavior of alclad aluminium 3005, Journal of Mechanical Science and Technology, 26(7), (2012), 2111-2115.Google Scholar

  • [3] Kłyszewski A., Żelechowski J., Frontczak A., Rutecki P., Szymański W., Zamkotowicz Z., Nowak M., New Rolled Aluminium Alloy Products for the Automotive Industry, Archives of Metallurgy and Materials, 59(1), (2014), 393-396.Google Scholar

  • [4] Pokova M., Cieslar M., Lacaze J., Enhanced AW3003 Aluminum Alloys for Heat Exchangers, WDS'11 Proceedings of Contributed Papers, Part III, (2011), 141-146.Google Scholar

  • [5] Naser T.S.B., Krallics G., Mechanical Behavior of Multipleforged Al 7075 Aluminum Alloy, Acta Polytechnica Hungarica, (2014), 11(7), 103-117.Google Scholar

  • [6] KaiserM.S., DuttaSwagata, Corrosion Behaviour of Aluminium Engine Block in 3.5% NaCl Solution, Journal of Materials Science and Chemical Engineering 2, (2014), 52-58Google Scholar

  • [7] Żaba K., Nowosielski M., Kita P., Kwiatkowski M., Tokarski T., Puchlerska S., Effect Of Heat Treatment On The Corrosion Resistance Of Aluminized Steel Strips, Arch. Metall. Mater., 60 (3), (2015), 1825-1831.Web of ScienceGoogle Scholar

  • [8] Borowski J., Wendland J., Żak K., Zjawisko korozji w aluminiowych wymiennikach ciepła samochodów osobowych, Rudy i Metale Nieżelazne, 55 (9), (2010), 607-613.Google Scholar

  • [9] Malik Anees U., Al-Fozan Saleh A., Al-Muaili Fahd, Corrosion of heat exchanger in thermal desalination plants and current trends in material selection, Desalination and Water Treatment, 55 (9), (2014), 2515-2525.Google Scholar

  • [10] Borowski J., Żak K., Samolczyk J., Sposoby zwiększania odporności na korozję wymienników ciepła wykonanych ze stopów aluminium, Rudy i Metale Nieżelazne, 54 (8), (2009), 491-499.Google Scholar

  • [11] Lou X., Rebak R. B., Exposure test evaluates coatings for seawater-cooled heat exchangers, Mater. Performance, 54 (2), (2015), 12-14.Google Scholar

  • [12] Zhao Y., Qi Z., Wang Q., Chen J., Shen J., Effect of corrosion on performance of fin-and-tube heat exchangers with different fin materials, Exp. Therm. Fluid Sci., 37,(2012), 98-103.Web of ScienceGoogle Scholar

  • [13] Oya Y., Kojima Y., Hara N., Influence of silicon on intergranular corrosion for aluminum alloys, Mater. Trans., 54 (7), (2013), 1200-1206.Web of ScienceGoogle Scholar

  • [14] Braun R., Environmentally assisted cracking of aluminium alloys, Materialwiss. Werkst., 38 (9), (2007), 674-689.Web of ScienceCrossrefGoogle Scholar

  • [15] Kannan M. B., Srinivasan P. B., Raja V. S., Stress corrosion cracking (SCC) of aluminium alloys, in: V. S. Raja, T. Shoji (Ed.), Stress Corrosion Cracking: theory and practice, Woodhead Publishing, Cambridge, UK, 2011.Google Scholar

  • [16] Tierce S., Pébère N., Blanc C., Casenave C., Mankowski G., Robidou H., Corrosion behaviour of brazing material AA4343, Electrochim. Acta, 52 (3), (2006), 1092-1100 .Google Scholar

  • [17] ASTM G85, Standard Practice for Modified Salt Spray (Fog) TestingGoogle Scholar

About the article

Received: 2017-04-04

Revised: 2017-05-15

Accepted: 2017-05-17

Published Online: 2017-05-31

Published in Print: 2017-01-26

Citation Information: Archives of Mechanical Technology and Materials, Volume 37, Issue 1, Pages 45–49, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in