Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Mechanical Technology and Materials

1 Issue per year

Open Access
Online
ISSN
2450-9469
See all formats and pricing
More options …

Surface condition, microstructure and microhardness of boronized layers produced on Vanadis-6 steel after modification by diode laser

Aneta Bartkowska
  • Corresponding author
  • Poznan University of Technology, Institute of Materials Science and Engineering, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Jurči
  • Slovak University of Technology in Bratislava; Faculty of Materials Science and Technology in Trnava, Paulinska 16, 917 24 Trnava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dariusz Bartkowski
  • Poznan University of Technology, Institute of Materials Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Damian Przestacki
  • Poznan University of Technology, Institute of Mechanical Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mária Hudáková
  • Slovak University of Technology in Bratislava; Faculty of Materials Science and Technology in Trnava, Paulinska 16, 917 24 Trnava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-21 | DOI: https://doi.org/10.1515/amtm-2017-0011

Abstract

The paper presents the study results of surface condition, microstructure and microhardness of Vanadis-6 tool steel after diffusion boriding and laser modification by diode laser. As a result of diffusion boriding the layers consisted of two phases: FeB and Fe2B. A bright area under the continuous boronized layers was visible. This zone was probably rich in boron. As a result of laser surface modification of boronized layers, the microstructure composed of three zones: remelted zone, heat affected zone and the substrate was obtained. The microstructure of remelted zone consisted of boron-martensite eutectic. The depth of laser track (total thickness of remelted zone and heat affected zone) was dependent on laser parameters (laser beam power density and scanning laser beam velocity). The microhardness of laser remelting boronized layer in comparison with diffusion boronized layer was slightly lower. The presence of heat affected zone was advantageous, because it allowed to obtain a mild microhardness gradient between the layer and the substrate.

Keywords: Boronized layer Laser remelting Microstructure Microhardness

References

  • [1] Przybyłowicz K., Teoria i praktyka borowania stali. Wyd. Politechniki Świętokrzyskiej, Kielce, 2000.Google Scholar

  • [2] Pertek A., The Structure Formation and the Properties of Boronized Layers Obtained in Gaseous Boriding Process, Dissertation no. 365, Publishing House of Poznan University of Technology, Poznan, 2001.Google Scholar

  • [3] Uslu I., Comert H., Ipek M., Ozdemir O., Bindal C., Evaluation of borides formed on AISI P20 steel. Materials and Design, 28 (2007) 55 - 61.Google Scholar

  • [4] Calik A., Simsek M., Karakas M.S., Ucar N., Effect of boronizing on microhardness and wear resistance of steel AISI 1050 and chilled cast iron. Metal Science and Heat Treatment, 56 (2014) 89 - 92.Google Scholar

  • [5] Muhammad W., Boriding of high carbon high chromium cold work tool steel. IOP Conference Series: Materials Science and Engineering, 60 (2014) 1-6.Google Scholar

  • [6] Jurči P., Hudáková M., Diffusion boronizing of H11 hot work tool steel. J. Mater. Eng. Perform. 20 (2011) 1180-1187.CrossrefGoogle Scholar

  • [7] Balandin Yu. A., Boronitriding of die steels in fluidized bed. Metal Science and Heat Treatment, 46 (2004) 385-387.CrossrefGoogle Scholar

  • [8] Młynarczak A., Piasecki A.,Budowa i właściwości dyfuzyjnych warstw chromoborowanych wytwarzanych na stalach narzędziowych. Archiwum technologii Maszyn i Automatyzacji, 24 (2004) 173-184.Google Scholar

  • [9] Wierzchoń T., Bieliński P., Sikorski K., Formation and propierties of multicomponent and composite borided layers on steel. Surface and Coatings Technology, 73 (1995) 121-124.Google Scholar

  • [10] Pertek A., Kulka M., Microstructure and properties of composite (B+C) diffusion layers on low-carbon steel. Journal of Materials Science, 38 (2003) 269-273.Google Scholar

  • [11] Bartkowska A., Swadźba R., Popławski M., Bartkowski D.,Microstructure, microhardness, phase analysis and chemical composition of laser remelted FeB-Fe2B surface layers produced on Vanadis-6 steel. Optics & Laser Technology 86 (2016) 115-125.Google Scholar

  • [12] Gopalakrishnan P., Shankar P., Subba Rao R.V., Sundar M., Ramakrishnan S. S., Laser surface modification of Low Carbon Borided Steels. Scripta Materialia, 44 (2001) 707-712.CrossrefGoogle Scholar

  • [13] Kusiński J., Lasery w inżynierii materiałowej. Wydawnictwo „Akapit”, Kraków (2000).Google Scholar

  • [14] Steen W.M.,Laser material processing-an overview. J. Opt. A: Pure Appl. Opt., 5 (2003) S3-S7.Google Scholar

  • [15] Bonek M., Dobrzański L.A., Hajduczek E., Klimpel A., Structure and properties of laser alloyed surface layers on the hot-work tool steel. Journal of Materials Processing Technology, 175 (2006) 45-54.Google Scholar

About the article

Received: 2017-04-03

Revised: 2017-06-01

Accepted: 2017-06-07

Published Online: 2017-06-21

Published in Print: 2017-01-26


Citation Information: Archives of Mechanical Technology and Materials, ISSN (Online) 2450-9469, DOI: https://doi.org/10.1515/amtm-2017-0011.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in