Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Anthropological Review

The Journal of Polish Anthropological Society

4 Issues per year


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.301
Source Normalized Impact per Paper (SNIP) 2016: 0.695

Open Access
Online
ISSN
2083-4594
See all formats and pricing
More options …

Chemical signals and reconstruction of life strategies from ancient human bones and teeth - problems and perspectives

Krzysztof Szostek
  • Department of Anthropology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
Published Online: 2010-01-22 | DOI: https://doi.org/10.2478/v10044-008-0013-5

Chemical signals and reconstruction of life strategies from ancient human bones and teeth - problems and perspectives

Chemical analyses of historical and prehistoric bone material provide us with a complex body of knowledge in bioarcheological studies. These can be used for reconstructing diet, migration, climate changes and the weaning process. The analysis of enamel, dentin and bones allows researchers to gather data on life strategies of an individual by retrospectively tracing his ontogenetic phases. This is made possible through knowledge of the mineralization periods of permanent and deciduous teeth while simultaneously taking account of differences between enamel, dentin and bone remodelling rates, dependent on the age of the individual. Yet, the large interpretative potential of isotope analyses of bone material is severely limited by diagenesis. The accurate recording of diagenetic changes in historical human bone material is a current main trend in bioarcheological research. Today, a highly specialised set of research tools is used for verifying whether bones unearthed at archeological sites are suitable for isotope tests. Isotope determinations are pivotal in this research as reconstructions of paleodiets or migrations of our ancestors can be based only on material that has been maintained intact in sufficient proportions post mortem.

Analizy chemiczne historycznego i przedhistorycznego materiału kostnego dostarczają kompleksowej wiedzy w badaniach bioarcheologicznych i mogą być wykorzystane do rekonstrukcji diety, migracji, zmian klimatycznych czy też procesu odstawienia od piersi. Ważnym aspektem tych badań jest możliwość uzyskania wiedzy o strategiach życiowych osobnika dzięki śledzeniu retrospektywnemu różnych jego faz ontogenetycznych. Jest to możliwe dzięki znanym okresom mineralizacji poszczególnych typów zębów stałych i mlecznych (z uwzględnieniem różnic pomiędzy szkliwem a zębiną), a także odmienności tempa remodelingu kostnego w zależności od wieku osobnika. Ponieważ duży potencjał interpretacyjny, który niosą ze sobą analizy izotopowe materiału kostnego podlega jednak znacznym ograniczeniom, związanym z nieprzewidywalną diagenezą, w badaniach wykorzystuje się specjalne metody pozwalające weryfikować pośmiertne zmiany struktury chemicznej materiału. W procedurach chemicznych analiz izotopowych efekt końcowy badań jest zawsze obarczony większymi lub mniejszymi błędami wpływającymi na ostateczny wynik. Ich źródła można przedstawić następująco: obróbka danych 10%, pomiar i kalibracja 30%, pobieranie i przygotowanie próbki 60%. Uzyskane wyniki będące efektem zmian diagenetycznych dostarczają wiedzy geochemicznej (interesującej geologów) a nie biochemicznej (interesującej antropologów), w związku z tym późniejsze próby interpretacji danych diagenetycznych nie są zasadne i nie wnoszą również żadnej istotnej wiedzy biologicznej. Dlatego gdy przedmiotem badań antropologicznych są pierwiastki i ich izotopy, niezbędna jest kompleksowa analiza materiału, uwzględniająca ocenę organicznej i nieorganicznej struktury kości i zębów.

Niezbędne są również dane archeozoologiczne oraz próbki wody środowiskowej (izotopy tlenu) i skał rodzimych (izotopy strontu) w celu określenia tła archeologicznego, geofizycznego i troficznego. Należy pamiętać, że istnieje prostoliniowa dodatnia zależność pomiędzy utratą frakcji organicznej kości (% kolagenu, C/N) a stopniem jej krystalizacji (Ca/P, CI). Najlepszą strategią badawczą związaną z analizami izotopowymi jest wykorzystanie apatytów pochodzących ze szkliwa i z zębiny lub kości zawierających dużą ilość oryginalnego kolagenu. Kości pozbawione składników organicznych są bardziej narażone na pośmiertne zmiany izotopowe oraz pierwiastkowe. Należy zwrócić także uwagę, że duża zawartość struktur organicznych utrudnia pozyskiwanie fosforanów i węglanów z kości. Nie zawsze uzyskane wyniki stopnia krystaliczności kości (CI) mieszczą się w zakresie odpowiadającym współczesnym materiałom (2,5-3,3). Dla materiału archeologicznego wartości te nie powinny przekraczać CI = 3,5. Zdarza się jednak, że pomimo wyższego CI materiał jest przydatny do dalszych analiz, ponieważ np. utrata pewnej części fosforanów nie zawsze jest związana ze zmianami stosunków izotopowych tlenu. Jeżeli materiał nie wykazuje istotnej korelacji pomiędzy izotopami tlenu a wskaźnikiem CI (tak jak we współczesnych zębach i kościach), oznacza to biogenny (niezmieniony) skład izotopowy. Podsumowując należy stwierdzić, że przed biologiczną interpretacją danych uzyskanych z analiz chemicznych kości i zębów trzeba zawsze zweryfikować stopień ewentualnych zmian diagenetycznych w badanym materiale.

Keywords: bone chemistry; diagenesis; stable isotopes; diet; migration

  • Ambrose S. H., 1990, Preparation and characterization of bone and tooth collagen for isotopic analysis, J. Archaeol. Sci., 17, 431-51CrossrefGoogle Scholar

  • Ambrose S. H., 1993, Isotopic analysis of paleodiets: Methodological and interpretive consideration, [in:] Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology, M. K. Sandford, (ed.) Gordon and Breach, Landorne PA, pp. 50-130Google Scholar

  • Ambrose S. H., J. Buikstra, H. W. Krueger, 2003 Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone, J. Anthropol. Archaeol., 22, 217-26CrossrefGoogle Scholar

  • Ambrose S. H., L. Norr, 1992, On stable isotopic data and prehistoric subsistence in the Soconusco region, Curr. Anthropol., 33, 401-4Google Scholar

  • Ambrose S. H., L. Norr, 1993, Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J. B. Lambert, G. Grupe (eds.), Springer-Verlag, Berlin, pp. 1-37Google Scholar

  • Ballasse M., 2003, Potential biases in sampling design and interpretation of intra-tooth isotope analysis, Int. J. Osteoarchaeol., 13, 3-10CrossrefGoogle Scholar

  • Ballasse M., H. Bocherens, A. Mariotti, 1999, Intra-bone variability of collagen and apatite isotopic composition used as evidence of a change of diet, J. Archaeol. Sci., 26, 593-98CrossrefGoogle Scholar

  • Ballase M., H. Bocherens, A. Mariotti, S. H. Ambrose, 2001, Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: An experimental study of dentine collagen of cattle (Boss taurus), J. Archaeol. Sci., 28, 235-45CrossrefGoogle Scholar

  • Bentley R. A., T. D. Price, E. Stephan, 2004, Determining the local 87Sr/86Sr range for archaeological skeletons: A case study from Neolithic Europe, J. Archaeol. Sci., 31, 365-75CrossrefGoogle Scholar

  • Bisel S. C., 1988, Nutrition in first century Herculaneum, Anthropologie (Brno), 26, 61-66Google Scholar

  • Bocherens H., 1997, Isotopic biogeochemistry as a marker of Neandertal diet, Anthr. Anz., 55, 101-20PubMedGoogle Scholar

  • Bryant J. D., B. Luz, P. N. Froelich, 1994, Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate, Paleogeogr. Paleoclimat. Paleoecol., 107, 303-16CrossrefGoogle Scholar

  • Budd P., J. Montgomery, B. Barreiro, R. G. Thomas, 2000, Differential diagenesis of strontium in archaeological human tissues, Appl. Geochem., 15, 687-94Google Scholar

  • Child A. M., 1995, Towards and understanding of the microbial decomposition of archaeological bone in the burial environment, J. Archaeol. Sci., 22, 165-74CrossrefGoogle Scholar

  • DeNiro M. J., 1985, Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction, Nature, 317, 806-9CrossrefGoogle Scholar

  • Dolphin A. E., A. H. Goodman, 2009, Maternal diets, nutritional status, and znic in contemporary Mexican infants' teeth: Implications for reconstructing paleodiets, Am. J. Phys. Anthropol., 140, 399-409CrossrefGoogle Scholar

  • Dubois S., J. L. Blin, B. Bouchaud, S. Lefebre, 2007, Isotope tropic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems, J. Exp. Mar. Biol. Ecol., 351, 121-28CrossrefGoogle Scholar

  • Dupras T. L., H. P. Schwarcz, 2001, Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt, J. Archaeol. Sci., 28, 1199-208CrossrefGoogle Scholar

  • Edward J. B., R. A. Benfer, 1993, The effect of diagenesis on the Paloma skeletal material, [in:] Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology, M. K. Sandford (ed.), Gordon and Breach, Landorne PA, pp. 183-268Google Scholar

  • Elliot J. C., 1994, Structure and chemistry of the apatites and other calcium orthophosphates, Amsterdam, ElsevierGoogle Scholar

  • Evans J., N. Stoodley, C. Chenery, 2006, A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England, J. Archaeol. Sci., 33, 265-72CrossrefGoogle Scholar

  • Ezzo J. A., 1992, A test of diet versus diagenesis at Ventana cave, Arizona, J. Archaeol. Sci., 19, 23-37CrossrefGoogle Scholar

  • Ezzo J. A., C. M. Johnson, T. D. Price, 1997, Analytical perspectives of prehistoric migration: a case study from East Central Arizona, J. Archaeol. Sci., 24, 447-66CrossrefGoogle Scholar

  • Farnum, J. F., M. D. Glascock, M. K. Sandford, S. Geritsen, 1995, Trace elements in ancient human bone and associated soil using NAA, J. Radioanal. Nucl. Chem., 196, 267-74Google Scholar

  • Fisher A., J. Olsen, M. Richards, J. Heinemeier, A.E Sveinbjornsdottir, P. Bennike, 2007, Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: Evidence from stable isotope values of humans and dogs, J. Archaeol. Sci., 34, 2125-50CrossrefGoogle Scholar

  • Fuller B. T., J. L. Fuller, D. A. Harris, R. E. M. Hedges, 2006a, Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios, Am. J. Phys. Anthropol., 129, 279-93CrossrefGoogle Scholar

  • Fuller B. T., T. I. Molleson, D. A. Harris, L. T. Gilmour, R. E. M. Hedges, 2006b, Isotopic evidence for breastfeeding and possible adult dietary differences from Late/Sub-Roman Britain, Am. J. Phys. Anthropol., 129, 45-54CrossrefGoogle Scholar

  • Gawlik D., D. Behne, P. Bratter, W. Gatschke, H. Gessner, D. Kraft, 1982, The suitability of the iliac crest biopsy in the element analysis of bone and marrow, J. Clinic. Chem. Clinic. Biochem., 20, 499-507Google Scholar

  • Gibson, I. R., W. Bonfield, 2002, Novel synthesis and characterization of an AB-type carbonate - substituted hydroxyapatite, J. Biomed. Mater. Res., 59, 697-708CrossrefGoogle Scholar

  • Grupe G., U. Dreses-Werringloer, F. Parsche, 1993, Initial stages of bone decomposition: Causes and consequences, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J. B. Lambert, G. Grupe (eds.), Springer- Verlag, Berlin, pp. 257-74Google Scholar

  • Grupe G., H. Pipenbrink, 1988, Trace element concentrations in excavated bones by microorganisms, [in:] Trace Elements in Environmental History, G. Grupe, B. Herrmann (eds.), Springer-Verlag, Berlin, pp. 103-12Google Scholar

  • Grupe G., H. Piepenbrink, M. J. Schoeninger, 1989, Note on microbial influence on stable carbon and nitrogen isotopes in bone, Appl. Geochem., 4, 299Google Scholar

  • Grupe G., T. D. Price, P. Schroeter, F. Sollner, C. M. Johnson, B. L. Beard, 1997, Mobility of Bell Baker people revealed by strontium isotope ratios of tooth and bone: A study of southern Bavarian skeletal remains, Appl. Geochem., 12, 517-25Google Scholar

  • Hancock R. G., M. D. Gynpas, K. P. H. Pritzker, 1989, The abuse of bone analyses for archaeological dietary studies, Archaeometry, 31, 169-80CrossrefGoogle Scholar

  • Hart J. P., W. A. Lovis, J. K. Schulenberg, G. R. Urquhart, 2007, Paleodietary implication from stable carbon isotope analysis of experimental cooking residues, J. Archaeol. Sci., 34, 804-13CrossrefGoogle Scholar

  • Hedges R. E. M., L. M. Reynard, 2007, Nitrogen isotopes and the trophic level of humans in archaeology, J. Archaeol. Sci., 34, 1240-51CrossrefGoogle Scholar

  • Honch N. V., T. F. G. Higham, J. Chapman, B. Gaydarska, R. E. M. Hedges, 2006, A paleodietary investigation of carbon (13C/12C) and nitrogen (15N/14N) in human and faunal bones from the Cooper Age cemeteries of Varna I and Durankulak, Bulgaria, J. Archaeol. Sci., 33, 1493-504Google Scholar

  • Hoogewerff J., W. Papeych, M. Kralik, M. Berner, P. Vroon, et al., 2001, The last domicile of Iceman from Hauslabjoch: A geochemical approach using Sr, C and O isotopes and trace element signatures, J. Archaeol. Sci., 28, 983-89CrossrefGoogle Scholar

  • Hoppe K. A., P. L. Koch, T. T. Furutani, 2003, Assessing the preservation of biogenic strontium in fossil bones and tooth enamel, Int. J. Osteoarchaeol., 13, 20-28CrossrefGoogle Scholar

  • Humphrey L. T., M. C. Dean, T. E. Jeffries, M. Penn, 2008, Unlocking evidence of early diet from tooth enamel, Proc. Natl. Acad. Sci., 105, 6834-39CrossrefGoogle Scholar

  • Hurt R. W., T.E Davis, 1981, Strontium isotopes as traces of airborne fly ash from coal-fired power plants, Environ. Geol., 3, 363-97Google Scholar

  • Iacumin P., H. Bocherens, L. Chaix, A. Marioth, 1998, Stable Carbon and Nitrogen Isotopes as Dietary Indicators of ancient Nubian populations (Northern Sudan), J. Archaeol. Sci., 25, 293-301CrossrefGoogle Scholar

  • Iacumin P., H. Bocherens, A. D. Huertas, A. Mariotti, A. Longinelli, 1997, A stable isotope study of fossil mammal remain from the Paglicci cave, Southern Italy. N and C as paleoenvironmental indicators, Earth. Planet. Sci. Lett., 148, 349-57CrossrefGoogle Scholar

  • Iacumin P., H. Bocherens, A. Mariotti, A. Longinelli, 1996, An isotopic paleoenvironmental study of human skeletal remains from Nile Valley, Paleogeogr. Paleoclimat. Paleoecol., 126, 15-30CrossrefGoogle Scholar

  • Iacumin P., V. Nikolaev, M. Ramigni, 2000, C and N isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: Herbivore physiologies and paleoenvironmental reconstruction, Paleogeogr. Paleoclimat. Paleoecol., 163, 22-47Google Scholar

  • Jørkov M. L., J. Heinemeier, N. Lynnerup, 2007, Evaluating bone collagen extraction methods for stable isotope analysis in dietary, J. Archaeol. Sci., 34: 1824-29CrossrefGoogle Scholar

  • Katzenberg, M. A., 2000, Stable isotope analysis: A tool for studying past diet, demography, and life history, [in] Biological Anthropology of the Human Skeleton, M. A. Katzenberg, S. R. Saunders (eds.), Wiley-Liss, New York, pp. 305-28Google Scholar

  • Katzenberg, M. A., A. Weber, 1999, Stable isotope ecology and paleodiet in the Lake Baikal region of Siberia, J. Archaeol. Sci., 26: 651-59CrossrefGoogle Scholar

  • Knobbe N., J. Vogl, W. Pritzkow, U. Panne, H. Fry, et al., 2006, C and N stable isotope variation in urine and milk of cattle depending on the diet, Anal. Bioanal. Chem., 386, 104-8Google Scholar

  • Knudson K. J., T. D. Price, 2007, Utility of multiple chemical techniques in archaeological residential mobility studies: Case studies from Twinaku- and Chiribaya-Affiliated sites in the Andes, Am. J. Phys. Anthropol., 132, 25-39CrossrefGoogle Scholar

  • Koch P. L., N. Tuross, M. L. Fogel, 1997, The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite, J. Archaeol. Sci., 24, 417-29CrossrefGoogle Scholar

  • Kohn M. J., M. J. Schoeninger, W. W. Baker, 1999, Altered states: Effects of diagenesis on fossil tooth chemistry, Geochim. Cosmochim. Acta, 63, 2737-47CrossrefGoogle Scholar

  • Krueger H. W., 1991, Exchange of carbon with biological apatite, J. Archaeol. Sci., 18, 355-61CrossrefGoogle Scholar

  • Krueger H. W., C. H. Sullivan, 1984, Models for carbon isotope fractionation between diet and bone, [in:] Stable Isotopes in Nutrition, J. E. Turnlund, P. E. Johnson (eds.), American Chemical Society, Symposium Series, 258, Washington D. C., pp. 205-22Google Scholar

  • Le Geros R. Z., 1991, Calcium phosphates in oral biology and medicine, Karger, ParisGoogle Scholar

  • Lee-Thorp J., M. Sponheimer, 2003, Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies, J. Anthropol. Archaeol., 22, 208-16Google Scholar

  • Lee-Thorp J., M. Sponheimer, 2006, Contributions of biogeochemistry to understanding hominin dietary ecology, Year. Phys. Anthropol., 49, 131-48Google Scholar

  • Lee-Thorp J. A., M. Sponheimer, 2007, Contribution of stable light isotopes to paleoenvironmental reconstruction, [in:] Handbook of paleoanthropology, W. Henke, I. Tattersall (eds.), Springer, Berlin, pp. 289-310Google Scholar

  • Lee-Thorp J. A., M. Sponheimmer, N. J. van der Merwe, 2003, What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene, Int. J. Osteoarchaeol., 13, 104-13Google Scholar

  • Lee-Thorp J. A., N. J. van der Merwe, 1987, Carbon isotope analysis of fossil bone apatite, S. Afr. J. Sci., 83, 712-15Google Scholar

  • Lee-Thorp J. A., N. J. van der Merwe, 1991, Aspects of the chemistry of modern and fossil biological apatite, J. Archaeol. Sci., 18, 343-54Google Scholar

  • Lee-Thorp J. A., N. J. van der Merwe, C. K. Brain, 1989, Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans, South Africa.J. Hum. Evol., 18, 183-90Google Scholar

  • Longinelli A., 1984, Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research, Geochim. Cosmochim. Acta, 48, 385-90CrossrefGoogle Scholar

  • Luz B., A. B. Cormie, H. P. Schwarcz, 1990, Oxygen isotope variations in phosphate of deer bones, Geochim. Cosmochim. Acta, 54, 1723-28CrossrefGoogle Scholar

  • Luz B., Y. Kolodny, M. Horowitz, 1984, Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water, Geochim. Cosmochim. Acta, 48, 1689-93CrossrefGoogle Scholar

  • Mays S., 1998, The archaeology of human bones, Routledge, LondonGoogle Scholar

  • McGlynn G., 2007, Using 13C-, 15N- and 18O stable isotope analysis of human bone tissue to identify transhumance, high altitude habitation and reconstruct palaeodiet for the early medieval Alpine population at Volders, Austria, PhD dissertation, Ludwig-Maximilians-Universität, MünchenGoogle Scholar

  • Minigawa M., E. Wada, 1984, Stepwise enrichment of 15 N along food chains: Further evidence and the relation between 15 N and animal age, Geochim. Cosmochim. Acta, 48, 1135-40CrossrefGoogle Scholar

  • Molleson T., 1987, Trace elements in human teeth, [in:] Trace Elements in Environmental History, G. Grupe, B. Herrmann (eds.), Springer-Verlag, Berlin, pp. 67-83Google Scholar

  • Munro, L. E., F. J. Longstaffe, C. D. White, 2007, Burning and boiling of modern deer bone: effects on the oxygen isotope composition of bioapatite phosphate, Palaeogeogr. Palaeoclimat. Palaeoecol., 249, 90-102CrossrefGoogle Scholar

  • Munro, L. E., F. J. Longstaffe, C. D. White, 2008, Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone, Palaeogeogr. Palaeoclimat. Palaeoecol., 266, 142-50CrossrefGoogle Scholar

  • Müller W., 2005, Isotopic tracing in Archaeometry, Research School of Earth Sciences, Australian National University, Canberra, ACT 0200Google Scholar

  • Niedźwiecki T., J. J. Kuryszko, 2007, Biologia kości, PWN, WarszawaGoogle Scholar

  • Ostrom P. G., M. Colunga-Garcia, S. H. Gage, 1997, Establishing pathways of energy flow for insect predators using stable isotope ratios: Field and laboratory evidence, Oecologia, 109, 108-13CrossrefGoogle Scholar

  • Ovalle C., S. Urquiaga, A. Del Pozo, E. Zegal, S. Arredondo, 2006, Nitrogen fixation in six forage legumes in mediterranean central Chile, Acta Agric. Scand., 56, 277-83Google Scholar

  • Pearsal D. M., 2008, Paleoethnobotany, A Handbook of Procedures, MPG Books, CornwallGoogle Scholar

  • Pearson J. A., H. Buitenhuis, R. E. M. Hedges, L. Martin, N. Russel, K. C. Twiss, 2007, New light on early caprine herding strategies from isotope analysis: A case study from Neolithic Anatolia, J. Archaeol. Sci., 34, 2170-79CrossrefGoogle Scholar

  • Peters C. R., J. C. Vogel, 2005, Africa's wild C4 plant foods and possible early hominid diets, J. Hum. Evol., 48, 219-36Google Scholar

  • Price T. D., R. A. Bentley, J. Lunig, D. Gronenborn, J. Wahl, 2001, Prehistoric human migration in the Linearbandkeramik of Central Europe, Antiquity, 75, 593-603Google Scholar

  • Price T. D., G. Grupe, P. Schroter, 1994a, Reconstruction of migration patterns in the Bell Baker period by stable strontium isotope analysis, Appl. Geochem., 9, 413-17Google Scholar

  • Price T. D., G. Grupe, P. Schroeter, 1998, Migration in the Bell Baker period of Central Europe, Antiquity, 72, 405-11Google Scholar

  • Price T. D., C. M. Johnson, J. A. Ezzo, J. Ericson, J. H. Burton, 1994b, Residential mobility in the prehistoric southwest US: A preliminary study using strontium isotope analysis, J. Archaeol. Sci., 21, 315-30CrossrefGoogle Scholar

  • Price T. D., C. Knipper, G. Grupe, V. Smrcka, 2004, Strontium isotopes and prehistoric human migration: The Bell Beaker period in Central Europe, Europ. J. Archaeol., 7, 9-40Google Scholar

  • Price T. D., L. Manzanilla, W. D. Middleton, 2000, Immigration and the ancient city of Teotihuan in Mexico: A study using strontium isotope ratios in human bone and teeth, J. Archaeol. Sci., 27, 903-13CrossrefGoogle Scholar

  • Price T. D., J. Wahl, R. A. Bentley, 2006, Isotopic evidence for mobility and group organisation among neolithic farmers at Talheim, Germany, 500 BC, Europ. J. Archaeol., 9, 259-84Google Scholar

  • Prowse T. L., H. P. Schwarcz, P. Garnsey, M. Knyf, R. Macchiarelli, L. Bondioli, 2007, Isotopic evidence for age-related immigration to Imperial Rome, Am. J. Phys. Anthropol., 132, 510-19CrossrefGoogle Scholar

  • Prowse T., H. P. Schwarcz, S. Sauners, R. Macchiarelli, L. Bondioli, 2004, Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Scara, Rome, Italy, J. Archaeol. Sci., 31, 259-72CrossrefGoogle Scholar

  • Richards M. P., R. E. M. Hedges, 1999, Stable isotope evidence for similarities in the types of marine food used by Late Mesolithic humans at sites along the Atlantic coast of Europe, J. Archaeol. Sci., 26, 717-22CrossrefGoogle Scholar

  • Riehl S., R. Bryson, K. Pustovoytov, 2007, Changing growing conditions for crops during the Near Eastern Bronze Age (3000-1200 BC): the stable carbon isotope evidence, J. Archaeol. Sci., 1, 1-12Google Scholar

  • Robinson J. T., 1954, Prehominid dentition and hominid evolution, Evolution, 8, 324-34CrossrefGoogle Scholar

  • Safont S., A. Malgosa, M.E, Subira, J. Gibert, 1998, Can trace elements in fossils provide information about paleodiet, Int. J. Osteoarchaeol., 8, 23-37CrossrefGoogle Scholar

  • Sanchez-Quevedo M. C., G. Ceballos-Salobrena, I. A. Rodriguez, J. M. Garcia, A. Campos, 2001, Quantitative X-ray microanalytical and histochemical patterns of calcium and phosphorus in enamel in human amelogenesis imperfecta, Int. J. Dev. Biol., 45, 115-17Google Scholar

  • Schoeninger M. J., M. J. DeNiro, 1984, Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals, Geochim. Cosmochim. Acta, 48, 625-39CrossrefGoogle Scholar

  • Schoeninger M. J., K. Moore, 1992, Bone stable isotope studies in archaeology, J. World. Prehistory, 6, 247-95CrossrefGoogle Scholar

  • Schurr M. R., R. G. Hayes, D. C. Cook, 2008, Thermally induced changes in the stable carbon and nitrogen isotope ratios of charred bones, [in] The Analysis of Burned Human Remains, C. W. Schmidt, S. A. Symes (eds.), Academic Press, London, pp. 95-108Google Scholar

  • Schwarcz J. P., L. Gibbs, M. Knyf, 1991, Oxygen isotope analysis as an indicator of place of origin, [in:] An Investigation of a Cemetery from the War of 1812, S. Pfeiffer, R. F. Williamson (eds.), Dundrun Press, Toronto, pp. 263-68Google Scholar

  • Schweissing M. M., G. Grupe, 2003, Stable strontium isotopes in human teeth and bone: A key to migration events of the late Roman period in Bavaria, J. Archaeol. Sci., 30, 1373-83CrossrefGoogle Scholar

  • Sealy J., R. Armstrong, C. Schrire, 1995, Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons, Antiquity, 69, 290-300Google Scholar

  • Sealy J. C., N. J. van der Merwe, J. A. Lee- Thorp, J.L Lanham, 1987, Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing, Geochim. Cosmochim. Acta, 51, 2707-17CrossrefGoogle Scholar

  • Sillen A., 1981, Post depositional changes in Natufian and Aurignacian faunal bones from Hayonim Cave, Paleorient, 7, 81-85Google Scholar

  • Sillen A., 1986, Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils in the Omo Shungura Formation, Paleobiology, 12, 311-23Google Scholar

  • Sillen A., 1989, Diagenesis of the inorganic phase of cortical bone, [in:] The Chemistry of Prehistoric Human Bone, T. D. Price (ed.), Cambridge University Press, pp. 211-29Google Scholar

  • Sillen A., 1992, Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans, J. Hum. Evol., 23, 495-516Google Scholar

  • Sillen A., J. C. Sealy, N. J. van der Merwe, 1989, Chemistry and paleodietary research: No more easy answers, Am. Antiq., 54, 504-12Google Scholar

  • Sponheimer M., J. A. Lee-Thorp, 2006, Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements, Geochim. Cosmochim. Acta, 70, 1644-54CrossrefGoogle Scholar

  • Stephan E., 2000, Oxygen isotope analysis of animal bone phosphate: Method refinement, influence of consolidants, and reconstruction of paleotemperatures for Holocene sites, J. Archaeol. Sci., 27, 523-35CrossrefGoogle Scholar

  • Stuart-Williams H. L., H. P. Schwarcz, 1997, Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel, and dentine, Geochim. Cosmochim. Acta, 61, 2539-50CrossrefGoogle Scholar

  • Surovell, T. A., M. C. Stiner, 2001, Standardizing Infra-red Measures of bone mineral crystallinity: An experimental approach, J. Archaeol. Sci., 28, 633-42CrossrefGoogle Scholar

  • Szostek K., 2006, Rekonstrukcja ogólnego stanu biologicznego historycznych i przedhistorycznych grup ludzkich na podstawie analiz makro i mikroelementów w materiale odontologicznym, Wyd. PiT, KrakówGoogle Scholar

  • Thackeray J. F., N. J. van der Merwe, J. A. Lee- Thorp, A. Sillen, J. L. Lanham, et al., 1990, Changes in carbon isotope ratios in the late Permian recorded in therapsid tooth apatite, Nature, 292, 751-53CrossrefGoogle Scholar

  • Thompson T. J. U., M. Gauthier, M. Islam, 2009, The application of a new method of Fourier Transform Spectroscopy to the analysis of burned bone, J. Archaeol. Sci., 36, 910-14CrossrefGoogle Scholar

  • Tieszen L.L, T. Fagre, 1993, Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J.B Lambert, G. Grupe (eds.), Springer- Verlag, Berlin, pp. 121-55Google Scholar

  • Tutken T., H. Furrer, T. W. Vennemann, 2007, Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment, and diet, Quat. Int., 164, 139-50Google Scholar

  • Ubelaker D. H., M. A. Katzenberg, L. G. Doyon, 1995, Status and diet in precontact highland Ecuador, Am. J. Phys. Anthropol., 97, 403-11CrossrefGoogle Scholar

  • Van der Merwe N. J., R. F. Williamson, S. Pfeiffer, S. C. Thomas, K. O. Allegretto, 2003, The Moatfield ossuary: Isotopic dietary analysis of an Iroquoian community, using dental tissue, J. Anthropol. Archaeol., 22, 245-61Google Scholar

  • White C., F. J. Longstaffe, K. R. Law, 2004a, Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth, J. Archaeol. Sci., 31, 233-50CrossrefGoogle Scholar

  • White C. D., M. E. Pohl, H. P. Schwarcz, F. J. Longstaffe, 2001, Isotopic evidence for Maya patterns of deer and dog use at Preclasic Colha, J. Archaeol. Sci., 28, 89-97CrossrefGoogle Scholar

  • White C. D., M. W. Spence, F. J. Longstaffe, K.R Law, 2004b, Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: The evidence from stable oxygen isotopes, J. Anthropol. Archaeol., 23, 385-403CrossrefGoogle Scholar

  • White C. D., M. W. Spence, Q. Stuart-Williams, H. P. Schwacz, 1998, Oxygen isotopes and the identification of geographical origins: The Valley of Oaxaca versus the Valley of Mexico, J. Archaeol. Sci., 25, 643-55CrossrefGoogle Scholar

  • Wright, L. E., H. P. Schwarcz, 1996, Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: Palaeodietary implications, J. Archaeol. Sci., 23, 933-44CrossrefGoogle Scholar

  • Wright L. E., H. P. Schwarcz, 1998, Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeeding and weaning in prehistory, Am. J. Phys. Anthropol., 106, 1-18CrossrefGoogle Scholar

  • Wright L. E., H. P. Schwarcz, 1999, Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: Infant diets at Kaminaljuyú, J. Archaeol. Sci., 26, 1159-70CrossrefGoogle Scholar

About the article


Published Online: 2010-01-22

Published in Print: 2009-01-01


Citation Information: Anthropological Review, ISSN (Online) 2083-4594, ISSN (Print) 1898-6773, DOI: https://doi.org/10.2478/v10044-008-0013-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in