Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Anthropological Review

The Journal of Polish Anthropological Society

4 Issues per year


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.301
Source Normalized Impact per Paper (SNIP) 2016: 0.695

Open Access
Online
ISSN
2083-4594
See all formats and pricing
More options …

Analysis of cribra orbitalia in the earliest inhabitants of medieval Vilnius

Šarūnas Jatautis
  • Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Čiurlionio 21, Vilnius LT 03101, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ieva Mitokaitė
  • Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Čiurlionio 21, Vilnius LT 03101, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rimantas Jankauskas
  • Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Čiurlionio 21, Vilnius LT 03101, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-01-03 | DOI: https://doi.org/10.2478/v10044-010-0006-z

Analysis of cribra orbitalia in the earliest inhabitants of medieval Vilnius

The purpose of this work is to present an analysis of cribra orbitalia (CO) from the population of a medieval cemetery in Vilnius, Lithuania, dated between the end of the 13th to the beginning of the 15th centuries. The sample consisted of 208 individuals with sufficiently preserved orbits: 82 subadults and 122 adults. CO was correlated with sex, age-at-death, and three skeletal indicators of biological health: linear enamel hypoplasia, periostitis, and adult femur length as a proxy value for stature. Siler's and Gompertz-Makeham's parametric models of mortality as well as χ2 statistics were used to evaluate these relationships. Almost one-third of all analyzed individuals had signs of CO, including approximately 60% of the subadults. There was a very strong relationship between the age-at-death and incidence of CO, i.e., individuals with the lesion were dying much younger. The frequency of CO among the sexes was not statistically significant. On the other hand, CO had a negative effect only on adult males, i.e., males who had the lesion died at a younger age. Furthermore, CO and linear enamel hypoplasia were positively related for subadults, whereas no significant relationships were found among adults of corresponding sex. Incidence of periostitis and adult stature were not related to CO.

Celem tej pracy była analiza cribra orbitalia (CO) w populacji ze średniowiecznego Wilna (Litwa), zbadanej na podstawie próby szkieletów z cmentarzyska datowanego od końca XIII do początków XV wieku. Podstawowe charakterystyki paleodemograficzne tej próby (208 osobników, w tym 82 młodocianych) zawiera tabela 1. Zbadano korelację CO z płcią, wiekiem w chwili śmierci i trzema kostnymi wyznacznikami zdrowia - hipoplazją szkliwa zębowego (LEH), śladami zapalenia okostnej i wysokością ciała (dorosłych). Do oceny zależności wykorzystano parametryczne modele umieralności Silera i Gompertz-Makehama oraz statystykę χ2.

Prawie 1/3 badanych osobników (32%)wykazywała CO, w tym 60% osobników młodocianych (zmarłych przed 15 rokiem życia). Ponadto analiza wykazała wysoką zależność między tą cechą a wiekiem w chwili śmierci - osoby ze śladami CO umierały znacznie młodziej (Fig. 1, 2). Może to sugerować, ze ważnym czynnikiem podnoszącym ryzyko zgonu wśród osobników młodocianych była anemia. Co więcej, jeśli nie są to ślady remodelowania, mogą one sugerować, że stresujące wydarzenia z dzieciństwa wpłynęły także pośrednio lub bezpośrednio na przeżywalność osób dorosłych. Choć u dorosłych kobiet CO występowały nieco częściej niż u mężczyzn, różnica nie była istotna. Z drugiej strony, CO miały negatywny wpływ tylko na dorosłych mężczyzn (umierali oni młodziej). Być może kobiety miały więc sprawniejszy układ odpornościowy. Innym wyjaśnieniem mogłaby być śmierć bardziej wrażliwych na ten czynnik dziewcząt w wieku młodocianym. CO pozytywnie korelowały z LEH u młodocianych, podczas gdy istotnych korelacji u dorosłych nie stwierdzono (tab. 2). Można sądzić, że młodociane i słabe osobniki z cechą CO, z większym prawdopodobieństwem miały LEH. Tak więc interakcje obu czynników sygnalizowanych obecnością cech CO i LEH mogły być odpowiedzialne za skracanie życia młodych osobników. Periostitis i wysokość ciała w badanej próbie nie wykazywały związku z CO (tab. 2).

Keywords: mortality; health; Late Middle Ages; Lithuania

  • Acsádi G.Y., J. Nemeskéri, 1970, History of Human Life Span and Mortality, Akadémiai Kiadò, BudapestGoogle Scholar

  • Arcini C., 1999, Health and Disease in Early Lund, Phd Dissertation, Lund University, LundGoogle Scholar

  • Aster J.C., 2004, Red blood cell and bleeding disorders, [in:] Robbins & Cotrain Pathological Basis of Diseases, Seventh Edition, V. Kumar, N. Fausto, A. Abbas (eds.), Saunders, 619-60Google Scholar

  • Aufderheide A.C., C. Rodriguez-Martin, 1998, The Cambridge Encyclopedia of Human Paleopathology, Cambridge University Press, CambridgeGoogle Scholar

  • Bass W.M., 2005, Human Osteology: A Laboratory and Field Manual, Missouri Archaeological Society, ColumbiaGoogle Scholar

  • Baronas D., 2001, Ligos ir epidemijos [Diseases and epidemics], [in:] Lietuvos Didžiosios Kunigaikštystės kultūra. Tyrinėjimai ir vaizdai [Culture of the Grand Duchy of Lithuania. Investigations and imagery], V. Ališauskas et al., Aidai, Vilnius, 293-303Google Scholar

  • Benuš R., Z. Obertová, S. Masnicová, 2010, Demographic, temporal and environmental effects on the frequency of cribra orbitalia in three early medieval populations from western Slovakia, J. Comp. Hum. Biol., 61, 178-90Google Scholar

  • Blom D.E., J.E. Buikstra, et al., 2005, Anemia and childhood mortality: Latitudinal patterning along the coast of pre-Columbian Peru, Am. J. Phys. Anthropol., 127, 152-69Google Scholar

  • Bocquet J.P., C.L. Masset, 1977, Estimateurs en Paléodémographie, L'Homme, 18, 65-90Google Scholar

  • Bumblauskas A., 2005, Senosios Lietuvos istorija, 1009-1795 [History of ancient Lithuania, 1009-1795], R. Paknio leidykla, VilniusGoogle Scholar

  • Cybulski J.S., 1977, Cribra orbitalia, a possible sign of early historic native populations of the British Columbia coast, Am. J. Phys. Anthropol., 47, 31-40CrossrefPubMedGoogle Scholar

  • Cohen M.N., G.J. Armelagos, 1984, Paleopathology at the Origins of Agriculture, Academic Press, New YorkGoogle Scholar

  • Crews D.E., B. Bogin, 2010, Growth, development, senescence, and aging: A life history perspective, [in:] A Companion to Biological Anthropology, C.S. Larsen (ed.), Wiley-Blackwell, Chicester, 124-52Google Scholar

  • Čaplinskas A.R., 2010, Vilniaus istorijos legendos ir tikrovė [Legends and reality of Vilnius history], Charibdė, VilniusGoogle Scholar

  • DeWitte S.N., 2010, Sex Differentials in Frailty in Medieval England, Am. J. Phys. Anthropol., 143, 285-97Google Scholar

  • Fairgrieve S.I., J.E. Molto, 2000, Cribra orbitalia in two temporally disjunct population samples from Dakhleh Oasis, Egypt, Am. Phys. Anthropol., 111, 319-31Google Scholar

  • Feremba ch D., I. Schwidetzky, M. Stloukal, 1980, Recommendations for age and sex diagnoses of skeletons, J. Hum. Evol., 9, 517-49Google Scholar

  • Garmus A., R. Jankauskas, 1993, Methods of Person's Identification from the Skeleton in Lithuania, Medicina Legalis Baltica, 3-4, 5-23Google Scholar

  • Grauer A.L., P. Stuart-Macadam (ed.), 1998, Sex and Gender in Paleopathological Perspective, Cambridge University Press, CambridgeGoogle Scholar

  • Grupe, G., 1995, Etiology of cribra orbitalia: Effect of amino acid profile in bone collagen and the iron content of bone minerals, Z. Morphol. Anthropol., 81, 125-37Google Scholar

  • Goodman A.H., D.L. Martin, 2002, Reconstructing health profiles from skeletal remains, [in:] The Backbone of History: Health and Nutrition in the Western Hemisphere, R.H. Steckel, J.C. Rose (eds.), Cambridge University Press, Cambridge, 11-60Google Scholar

  • Hengen O.P., 1971, Cribra orbitalia, pathogenesis and probable etiology, Homo, 22, 57-75Google Scholar

  • Hillson S., 1996, Dental Anthropology, Cambridge University Press, CambridgeGoogle Scholar

  • Holland T.D., M.J. O'Brien, 2002, Parasites, porotic hyperostosis, and the implications of changing perspectives, American Antiquity, 62, 183-93Google Scholar

  • Yoder C.J., 2006, The Late Medieval Agrarian Crisis and Black Death Plague Epidemic in Medieval Denmark: A Paleoapathalogical and Paleodietary Perspective, PhD Dissertation, Texas A&M University, HoustonGoogle Scholar

  • Jonaitis R. Vėževičienė V., 2006, Istorinis rusų miestas senajame Vilniuje XIV- XV a., Arkheologia i istoria Litvy i Severo-Zapada Rossii (materialy mezhdunarodnogo simpoziuma) [Historical Russian town in Vilnius in 14th-15th centuries, Archaeology and history of Lithuania and North-West Russia (materials of international symposium)]. Sankt-Peterburg, December 4-8, 2006Google Scholar

  • Katalynas K., 2006, Vilniaus plėtra XIV - XVII a. [Development of Vilnius in 14th-17th centuries], Diemedžio leidykla, VilniusGoogle Scholar

  • Kiaupa Z., J. Kiaupienė, A. Kuncevičius, 2000, Lietuvos Istorija iki 1795 metų [History of Lithuania till 1795], A. Varnas, VilniusGoogle Scholar

  • Kozak J., M. Krenz-Niedbala, 2002, The occurrence of cribra orbitalia and its association with enamel hypoplasia in a medieval population from Kołobrzeg, Poland, Variability and Evolution, 10, 75-82Google Scholar

  • Lallo J., G.J. Armelagos, J.C. Rose, 1977, Paleoepidemiology of infectious disease in the Dickson Mounds population, Medical College of Virginia Quarterly, 14, 17-23Google Scholar

  • Larsen C.S., 1997, Bioarchaeology: Interpreting Behaviour from the Human Skeleton, Cambridge University Press, CambridgeGoogle Scholar

  • Lewis M.E., 2002, The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology, Cambridge University Press, CambridgeGoogle Scholar

  • Maat G.J.R., R.G. Panhuysen, R.W. Mastwijk, 2002, Manual for the Physical Anthropological Report, Barge's Anthropologica No. 6, LeidenGoogle Scholar

  • Massler M., I. Schour, H.G. Poncher, 1941, Developmental pattern of the child as reflected in the calcification pattern of the teeth, Am. J. Dis. Child, 62, 33-67Google Scholar

  • Mensforth R.P., 1985, Relative tibia long bone growth in the Libben and Bt-5 prehistoric skeletal populations. Am. J. Phys. Anthropol., 68, 247-62CrossrefGoogle Scholar

  • Mensforth R.P., C.O. Lovejoy, J.W. Lallo, G.J. Armelagos, 1978, The role of constitutional factors, diet, and infectious disease in the etiology of porotic hyperostosis and periosteal reactions in prehistoric infants and children, Med. Antropol., 2, 1-59CrossrefGoogle Scholar

  • Milner G.R., J.W. Wood, J.L. Boldsen, 2000, Paleodemography, [in:] Skeletal Biology of Past People: Research Methods, S.R. Saunders, M.A. Katzenberg (eds.). Wiley-Liss, New York, 467-97Google Scholar

  • Milner G.R., J.W. Wood, J.L. Boldsen, 2008, Advances in paleodemography, [in:] Biological Anthropology of the Human Skeleton, Second Edition, M.A. Katzenberg, S.R. Saunders (eds.), Wiley-Liss, New York, 561-600Google Scholar

  • Mitokaitė I., 2011, Seniausių Vilniaus gyventojų bioarcheologinė charakteristika, 2006-2010 m. archeologinių tyrimų Bokšto g. 6 duomenimis [Bioarchaeological charateristics in Vilnius oldest inhabitants according to archaeological data from Bokšto street 2006-2010], Master thesis, Vilnius University, VilniusGoogle Scholar

  • Mittler D.M., D.P. Van Gerven, 1994, Developmental, diachronic, and demographic analysis of cribra orbitalia in the medieval christian population of Kulubnarti, Am. J. Phys. Anthropol., 93, 287-97CrossrefGoogle Scholar

  • Montez J.K., M.D. Hayward, 2011, Early life conditions and later life mortality, [in:] International Handbook of Adult Mortality, R.G. Rogers, E.M. Crimmins (eds.), Springer, Dordrecht, 187-206Google Scholar

  • Obertová Z., M. Thurzo, 2008, Relationship between cribra orbitalia and enamel hypoplasia in the early medieval Slavic population at Borovce, Slovakia, Int. J. Ostearchaeol., 18, 280-92CrossrefGoogle Scholar

  • Ortner D.J., 1998, Male-female immune reactivity and its implications for interpreting evidence in human skeletal paleopathology, [in:] Sex and Gender in Paleopathological Perspective, A.L. Grauer, P. Stuart-Macadam (eds.), Cambridge University Press, Cambridge, 79-92Google Scholar

  • Ortner D.J., 2003, Identification of Pathological Conditions in Human Skeletal Remains, Second Ed., Academic Press, LondonGoogle Scholar

  • Ortner D.J., M.F. Ericksen, 1997, Bone changes in the human skull probably resulting from scurvy in infancy and childhood, Int. J. Osteoarchaeol., 7, 212-20CrossrefGoogle Scholar

  • Ortner D. J., E.H. Kimmerle, M. Diez, 1999, Prabable evidence of scurvy in subadults from archaeological sites in Peru, Am. J. Phys. Anthropol., 108, 321-31CrossrefGoogle Scholar

  • Ortner D.J., W. Butler, J. Cafarella, L. Milligan, 2001, Evidences of probable scurvy in subadults from archaeological sites in North America, Am. J. Phys. Anthropol., 114, 343-51CrossrefGoogle Scholar

  • Palubeckaitė Ž., R. Jankauskas, J. Boldsen, 2002, Enamel hypoplasia in Danish and Lithuanian late medieval/early modern samples: A possible reflection of child morbidity and mortality patterns, Int. J. Osteoarchaeol., 12, 189-201CrossrefGoogle Scholar

  • Piontek J., T. Kozlowski, 2002, Frequency of cribra orbitalia in the subadult medieval population from Gruczno, Poland, Int. J. Ostearchaeol., 12, 202-208CrossrefGoogle Scholar

  • Redfern R.C., S.N. DeWitte, 2011, A new approach to the study of romanization in Britain: A regional perspective of cultural change in late iron age and roman Dorset using the Siler and Gompertz-Makeham models of mortality, Am. J. Phys. Anthropol., 144, 269-85CrossrefGoogle Scholar

  • Repetto E., A. Cancini, M. Borgognini-Tarli, 1988, Skeletal indicators of health conditions in the Bronze Age sample from Toppo Daguzzo (Basilicata, Southern Italy), Anthropologie, XXVI, 173-82Google Scholar

  • Salvadei L., F. Ricci, G. Manzi, 2001, Porotic hyperostosis as a marker of health and nutritional conditions during childhood: Studies at the transition between imperial Rome and the Early Middle Ages, Am. J. Hum. Biol., 13, 709-17Google Scholar

  • Schultz M., 2001, Paleohistopathology of bone: A new approach to the study of ancient diseases, Yrbk. Phys. Anthropol., 44, 106-47CrossrefGoogle Scholar

  • Steckel R.H., 2005, Young adult mortality following severe physiological stress in childhood: Skeletal evidence, Econ Hum Biol, 3, 314-28PubMedCrossrefGoogle Scholar

  • Steckel R.H., J.C. Rose, 2002, The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge University Press, CambridgeGoogle Scholar

  • Steinbock T.R., 1976, Paleopathological Diagnosis and Interpretation, Charles C. Thomas, Springfield, Ill.Google Scholar

  • Stinson S., 2000, Growth variation: biological and cultural factors, [in:] Human biology: An evolutionary and biocultural approach, S. Stinson et al. (eds.), Wiley-Liss, New York, 425-63Google Scholar

  • Stodder A.L.W., 1997, Subadult stress, morbidity, and longevity in Latte Period populations on Guam, Mariana Islands, Am. Phys. Anthropol., 104, 363-80CrossrefGoogle Scholar

  • Stuart-Macadam P., 1985, Porotic hyperostosis: Representative of a childhood condition, Am. J. Phys. Anthropol., 66, 391-98CrossrefGoogle Scholar

  • Stuart-Macadam P., 1987, A radiographic study of porotic hyperostosis, Am. J. Phys. Anthropol., 74, 511-20CrossrefGoogle Scholar

  • Stuart-Macadam P., 1992, Porotic hyperostosis: A new perspective, Am. J. Phys. Anthropol., 87, 39-47CrossrefGoogle Scholar

  • Stuart-Macadam P., 1998, Iron deficiency anemia: exploring the difference, [in:] Sex and Gender in Paleopathological Perspective, A.L. Grauer, P. Stuart-Macadam (eds.), Cambridge University Press, Cambridge, 45-63Google Scholar

  • Sullivan A., 2005, Prevalence and etiology of acquired anemia in medieval York, England, Am. J. Phys. Anthropol., 128, 252-72CrossrefPubMedGoogle Scholar

  • Šlaus, M., 2000, Biocultural analysis of sex differences in mortality profiles and stress levels in the late medieval population from Nova Rača, Croatia, Am. J. Phys. Anthropol., 111, 193-209Google Scholar

  • Ubelaker D.H., 1989, Human Skeletal Remains. Excavations, Analysis, Interpretation. Manuals of Archaeology, Second Ed., Taraxacum, WashingtonGoogle Scholar

  • Usher B.M., 2000, A Multistate Model of Health and Mortality for Paleodemography, PhD Dissertation, Pennsylvania State University, University ParkGoogle Scholar

  • Vaitkevičius G., 2010, Vilniaus įkurimas [Foundation of Vilnius], Lietuvos nacionalinis muziejus, VilniusGoogle Scholar

  • Waldron T., 2007, Paleoepidemiology. The Measure of Diseases in the Human Past, Left Coast Press, Inc., Walnut Creek, CaliforniaGoogle Scholar

  • Waldron T., 2009, Paleopathology, Cambridge University Press, CambridgeGoogle Scholar

  • Walker P., 1986, Porotic hyperostosis in a marine-dependent California Indian population, Am. J. Phys. Anthropol., 69, 345-54CrossrefGoogle Scholar

  • Walker P.L., R.R. Bathurst, R. Richman, T. Gjerdrum, V.A. Andrushko, 2009, The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency-anemia hypothesis, Am. J. Phys. Anthropol., 139, 109-25Google Scholar

  • Wapler U., E. Crubězy, M. Schultz, 2004, Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan, Am. J. Phys. Anthropol., 123, 333-39Google Scholar

  • Weston D.A., 2008, Investingating the Specificity of Periosteal Reactions in Pathology Museum Specimens, Am. Phys. Anthropol., 137, 48-59Google Scholar

  • Wood J.W., D.J. Holman, K.M. Weiss, A.V. Buchanan, B. LeFor, 1992, Hazards models for human population biology. Yrbk. Phys. Anthropol. 39, 99-135Google Scholar

  • Wood J.W., D.J. Holman, K.A. O'Connor, R.J. Ferrell, 2002, Mortality models for paleodemography, [in:] Paleodemography: Age Distributions from Skeletal Samples, R.D. Hoppa, J.W. Vaupel (eds.), Cambridge University Press, Cambridge, 129-68Google Scholar

About the article


Published Online: 2012-01-03

Published in Print: 2011-01-01


Citation Information: Anthropological Review, ISSN (Online) 2083-4594, ISSN (Print) 1898-6773, DOI: https://doi.org/10.2478/v10044-010-0006-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Frances Rivera and Marta Mirazón Lahr
American Journal of Physical Anthropology, 2017, Volume 164, Number 1, Page 76
[2]
Gunita Zariſa, Sabrina B. Sholts, Alina Tichinin, Vita Rudovica, Arturs Vīksna, Austra Engīzere, Vitolds Muižnieks, Eric J. Bartelink, and Sebastian K.T.S. Wärmländer
Journal of Trace Elements in Medicine and Biology, 2016, Volume 38, Page 131

Comments (0)

Please log in or register to comment.
Log in