Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Anthropological Review

The Journal of Polish Anthropological Society

4 Issues per year


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.301
Source Normalized Impact per Paper (SNIP) 2016: 0.695

Open Access
Online
ISSN
2083-4594
See all formats and pricing
More options …

Frequency and chronological distribution of linear enamel hypoplasia (LEH) in the Late Neolithic and Early Bronze Age population from Żerniki Górne (Poland) – preliminary report

Jacek Tomczyk / Maria Tomczyk-Gruca / Marta Zalewska
  • Department of Prevention of the Environmental Hazards and Allergology, Medical University of Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-20 | DOI: https://doi.org/10.2478/v10044-012-0005-3

Abstract

Linear enamel hypoplasia (LEH) is treated as a nonspecific indicator of stress, but even so, many authors consider it the most reliable tool stress in anthropological research. Its analysis allows the reconstruction of health related to the socio-economic status of the group. This study documents and interprets patterns of LEH in Żerniki Górne (Poland), a settlement which was functional in the Late Neolithic and the Early Bronze Age. We examined two successive cultures: the Corded Ware Culture (CWC; 3200-2300BC) and the Trzciniec Culture (TC; 1500-1300BC). In total, there were 1486 permanent teeth (124 adult individuals). The frequency of LEH in the examined cultures shows a small rising trend. In these series from Żernik Górne, males showed a higher occurrence of LEH (16.5%) than females (13.4%). The earliest LEH appeared at similar ages at about 2.0/2.2 years and the last LEH occurred at about 4.2 years of age in both cultures. However, it is worth noting that periods associated with physiological stress were more common but not very long (four months on average) in the CWC. Longer stress periods (nine months on average) were associated with the TC.

Keywords: enamel hypoplasia; Żerniki Górne; Corded Ware Culture; Trzciniec Culture

  • Armelagos GJ, Barnes KC, Lin J. 1996. Disease in human evolution: the re-emergence of infectious disease in the third epidemiological transition. AnthroNotes. National Museum of Natural History Bulletin for Teachers 18(3).Google Scholar

  • Aufderheide AC, Rodríguez-Martín C. 2008. The Cambridge encyclopedia of human paleopathology. Cambridge: Cambridge University Press.Google Scholar

  • Bahn P. 1992. Dictionary of archaeology. Glasgow: Harper Collins Publishers.Google Scholar

  • Berbesque JC, Doran GH. 2008. Brief communication: physiological stress in the Florida archaic - enamel hypoplasia and patterns of developmental insult in Early North American hunter-gatherers. Am J Phys Anthropol 136:351-56.PubMedCrossrefGoogle Scholar

  • Boldsen JL. 2007. Early childhood stress and adult age mortality - a study of dental enamel hypoplasia in teeth Medieval Danoish village of Tirup. Am J Phys Anthropol 132:59-66.PubMedCrossrefGoogle Scholar

  • Bonfiglioli B, Brasili MG, Belcasreo MG. 2003. Dento-alveolar lesions and nutritional habits of a Roman Imperial age population (1st-4th c. AD): Quadrella (Molise, Italy). J Comp Hum Biol 54:36-56.Google Scholar

  • Clayton F, Sealy J, Pfeiffer S. 2006. Weaning age among foragers at Matjes River Rock Shelter, South Africa, from stable nitrogen and carbon isotope analysis. Am J Phys Anthropol 129:311-17.PubMedCrossrefGoogle Scholar

  • Cucina A. 2002. Brief communication: diachronic investigation of linear enamel hypoplasia in prehistoric skeletal samples from Trentino, Italy. Am J Phys Anthropol 119:283-87.CrossrefPubMedGoogle Scholar

  • Eshed V, Gopher A, Pinhasi R, Hershkovitz I. 2010. Paleopathology and the origin of agriculture in the Levant. Am J Phys Anthropol 143:121-33.PubMedCrossrefGoogle Scholar

  • Fédération Dentaire International. 1982. An epidemiological index of developmental defects of dental enamel (DDE Index). Int Dent J 32:159-67.Google Scholar

  • Gleń-Haduch E. 1995. Biological status analysis of the Neolithic and early Bronze Age populations from WyżynaMałopolska. In: J Schmager, editor. Prace Zakładu Antropologii Uniwersytetu Jagiellońskiego. Kaków: Wydawnictwo UJ. 115-39.Google Scholar

  • Gleń-Haduch E, Szostek K, Głąb H. 1997. ribra orbitalia and trace element content in human teeth from Neolithic and Early Bronze Age graves in southern Poland. m J Phys Anthropol 103:201-07.Google Scholar

  • Goodman AH, Armelagos GJ, Rose JC. 1984. he chronological distribution of enamel hypoplasia from prehistoric Dickson Mounds populations. Am J Phys Anthropol 65:259-66.CrossrefGoogle Scholar

  • Goodman AH, Allen LH, Hernandez GP, Amador A, Arriola LV, Chavez A, et al. 1987. Prevalence and g at development of enamel hypoplasia in Mexican children. Am J Phys Anthropol 72:7-19.CrossrefGoogle Scholar

  • Goodman AH, Armelagos GJ. 1988. Childhood stress and decreased longevity in a prehistoric population. Am Anthropol 90:936-44.CrossrefGoogle Scholar

  • Goodman AH, Rose JC. 1990. Assessment of systematic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook Phys Anthropol 33:59-110.CrossrefGoogle Scholar

  • Griffin RC, Donlon D. 2009. Patterns in dental enemel hypopasia by sex and age at death in two archaeological populations. Arch Oral Biol 54S:93-100.Google Scholar

  • Guatelli-Steinberg D, Lukacs JR. 1999. Interpreting sex differences in enamel hypoplasia in human and non-human primates: developmental, environmental andcultural considerations. Yearbook Phys Anthropol 42:73-126.CrossrefGoogle Scholar

  • Guatelli-Steinberg D. 2003. Macorscopis and microscopic analyses of linear enamel hypoplasia in Plio- Pleistocene South African Hominins with respect to aspects of enamel development and morphology. Am J Phys Anthropol 120:309-22.CrossrefGoogle Scholar

  • Haduch E. 2002. The human biology of the Neolithic and bronze age population of Poland. In: P Bennike, E Bodzsar and C Susanne,editors. Ecological aspects of past human settlements in Europe. Budapest: Eőtvős University Press. 143-56.Google Scholar

  • Henneberg RJ, Henneberg M. 1989. Dental caries and enamel hypoplasia in a rural population of the ancient Greek Colony of Metaponto, Italy. Am J Phys Anthropol 78:240. Herring DA, Sauders SR, Katzenberg MA. 1998. Investigating the weaning process in past populations. Am J Phys Anthropol 105:425-39. Google Scholar

  • Hillson S. 2002. Dental Anthropology. Cambridge: Cambridge University Press. Hillson S. 2008. Dental pathology. In: MA Katzenberg and SR Saunders, editors. Biological anthropology of the human skeleton. New Jersey: Wiley-Liss. 301-40. Google Scholar

  • Hillson S, Bond S. 1997. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am J Phys Anthropol 104:89-103.PubMedCrossrefGoogle Scholar

  • Hoyenga KB, Hoyenga KT. 1982. Gender and energy balance: sex different in adaptations for feast and famine. Physiol Behav 28:545-63.CrossrefGoogle Scholar

  • Jackes M. 2009. Teeth and the past in Portugal: pathology and the Mesolithic-Neolithic transition. In: T Koppe, G Mayer and KW Alt, editors. Comparative dental morphology. Basel: Krager. 167-72.Google Scholar

  • Jankowska D. 1999. Remarks on the study of consumption in the communities of the late Band Pottery Culture (LPC) and the Corded Ware Culture inhabiting Polish territories (a comparative study). In: D Jankowska, M Krenz-Niedbała, J Piontek and J Wierzbicki, editors. Biological and cultural consequences of the transition to agriculture in Central Europe. Poznań: Wydawnictwo Naukowe UAM. 27-44.Google Scholar

  • Kardow S, Machnik J. 1997. Kultura Mierzanowicka. Chronologia, taksonomia i rozwój przestrzenny. Kraków: Wydawnictwo Oddziału PAN. Google Scholar

  • Katzenberg MA, Herring DD, Saunders SR. 1996. Weaning and infant mortality: evaluating the skeletal evidence. Yearbook Phys Anthropol 39:177-99.CrossrefGoogle Scholar

  • Keenleyside A, Panayotova K. 2006. Cribra orbitalia and porotic hyperostosis in a Greek colonialpopulation (5th to 3rd centuries BC) from the Black Sea. Int J Osteoarchaeol 16: 373-8.4.Google Scholar

  • Kempisty A, Włodarczyk P. 1996. Chronologia absolutna cmentarzyska w Żernikach Górnych, woj. Kieleckie. In: A Kempisty and P Włodarczyk, editors. Concordia. Studia ofiarowane Jerzemu Okuliczowi- Kozarynowi w sześćdziesiątą piątą rocznicę urodzin. Warszawa: Wydawnictwa UW. 127-40.Google Scholar

  • Köhler K, Pálfi G, Molnár E, Zalai-Gaál I, Osztás A, Bánffy E, et al. 2012. A Late Neolithic case of Pott’s disease from Hungary. Int J Osteoarchaeol doi:10.1002/oa.2254.CrossrefGoogle Scholar

  • King T, Humphrey LT, Hillson S. 2005. Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two know age-at-death and sex populations from postmedieval London. Am J Phys Anthropol 128:547-59. CrossrefGoogle Scholar

  • Krenz-Niedbała M. 1999. Morphological response to living conditions in the populations of Corded Ware Culture and Lengyel Culture. In: D Jankowska, M Krenz-Niedbała, J Piontek and J Wierzbicki, editors. Biological and cultural consequences of the transition to agriculture in Central Europe. Poznań: Wydawnictwo Naukowe UAM. 83-103.Google Scholar

  • Krenz-Niedbała M. 2000. Biologiczne i kulturowe skutki neolityzacji w populacjach ludzkich na ziemiach polskich. Poznań: Wydawnictwo Naukowe UAM.Google Scholar

  • Krenz-Niedbała M. 2001. Biological and cultural consequences of the transition toagriculture in human population on Polish territories. Variability and Evolution 9:89-99.Google Scholar

  • Krenz-Niedbała M, Kozłowski T. 2011. Comparing the chronological distribution of enamel hypoplasis in Rogowo, Poland (2nd century AD) using two methods of defect timing estimation. Int J Osteoarchaeol doi: 10.1002/oa.1262.CrossrefGoogle Scholar

  • Kruk J. 1980. Gospodarka w Polsce Południowo- Wschodniej w V-III tysiącleciu p.n.e. Kraków: Wydawnictwo Oddziału PAN.Google Scholar

  • Kruk J, Milisauskas S. 1999. Rozkwit i upadek społeczeństw rolniczych Neolitu. Kraków: Instytut Archeologii i Etnologii PAN.Google Scholar

  • Kujanová M, Bigoni L, Velemińska J, Velemińsky P. 2008. Limb bones asymmetry and stress in medieval and recent populations of Central Europe. Int J Osteoarchaeol 18:476-91.CrossrefGoogle Scholar

  • Larsen CS. 1995. Biological changes in human populations with agriculture. Annu Rev Anthropol 24:185-213.CrossrefGoogle Scholar

  • Larsen CS. 2003. Bioarcheology.Interpreting behavior from the human skeleton. Cambridge: Cambridge University Press.Google Scholar

  • Liebe-Harkort C. 2012. Cribra orbitalia, sinusitis and linear enamel hypoplasia in Swedish Roman Iron Age adults and subadults. Int J Osteoarchaeol 22:387-97.CrossrefGoogle Scholar

  • Limbo J. 2006. Dental enamel hypoplasia in the Pada cemetery (12th-13th cc.) population in north-east Estonia. P Anthropol 15:114-23.Google Scholar

  • Liversidge HM. 2000. Crown formation times of human permanent anterior teeth. Arch O Biol 45:713-21.CrossrefGoogle Scholar

  • Marlowe FW. 2005. Hunter-gather and human evolution. Evol Anthropol 14:54-67.CrossrefGoogle Scholar

  • May RL, Goodman AH, Meindl RS. 1993. Response of bone and enamel formation to nutritional supplementation and morbidity among malnourished Guatemalan children. Am J Phys Anthropol 92:37-51.PubMedCrossrefGoogle Scholar

  • Molnar P, Ahlstrom TP, Leden I. 2011. Osteoarthritis and activity - an analysis of the relationship between eburnation, musculoskeletal stress markers (MSM) and age in two Neolithic hunter-gatherer populations from Gotland, Sweden. Int J Osteoarchaeol 21:283-91.CrossrefGoogle Scholar

  • Piontek J. 1999. Body size and proportions in the Upper Paleolithic-Neolithic transition: evidence from Central Europe. In: D Jankowska, M Krenz-Niedbała, J Piontek and J Wierzbicki, editors. Biological and cultural consequences of the transition to agriculture in Central Europe. Poznań: Wydawnictwo Naukowe UAM. 61-84.Google Scholar

  • Piontek J, Kozłowski T. 2002. Frequency of cribra orbitalia in the subadult medieval population from Gruczno, Poland. Int J Osteoarchaeol 12:202-08.CrossrefGoogle Scholar

  • Piontek J, Vancata V. 2002. Transition to agriculture in Europe: evolutionary trends in body size and body shape. In: P Bennike, E Bodzsar and C Susanne, editors. Ecological aspects of past human settlements in Europe. Budapest: Eőtvős University Press. 61-92.Google Scholar

  • Reid DJ, Dean MC. 2000. Brief communication: the timing of linear hypoplasias on human anterior teeth. Am J Phys Anthropol 113:135-39.PubMedCrossrefGoogle Scholar

  • Reid DJ, Dean MC. 2006. Variation in human enamel formation times. J Hum Evol 50:329-46.CrossrefPubMedGoogle Scholar

  • Ritzman TB, Baker BJ, Schwartz GT. 2008. A fine line: a comparison of methods for estimating ages of linear enamel hypoplasis formation. Am J Phys Anthropol 135:348-61.CrossrefGoogle Scholar

  • Smith BH. 1984. Patterns of molar wear in hunter-gatherers and agriculturalists. Am J Phys Anthropol 63:39-56.CrossrefGoogle Scholar

  • Suckling GW, Herbison GP, Brown RH. 1987. Etiological factors influencing the prevalence of developmental defects of dental enamel in nine-year-old New Zealand children participating in a health and development study. J Dent Res 66:1566-69.Google Scholar

  • Temple DH. 2010. Patterns of systematic stress during the agricultural transition in prehistoric Japan. Am J Phys Anthropol 142:112-24.Google Scholar

  • Tomczyk J, Sołtysiak A, Tomczyk-Gruca M. 2007. Temporal changes in frequency of enamel hypoplasia in the Middle Euphrates Valley (Syria). In: EB Bodzsár and A Zsákai, editors. Human diversity and biocultural researches. Budapest: Plantin- Publ. & Press. 87-97.Google Scholar

  • Tunia K. 1986. Z problematyki środowiskowych uwarunkowań gospodarki pasterskiej na terenie górskiej strefy polskich Karpat Zachodnich w czasach prahistorycznych. Acta Archaeol Carpathica 25:219-30.Google Scholar

  • Wierzbicki J. 1999. Characteristics of the cultural-chronological position of Neolithic burial grounds at Osłonki, Złota and ŻernikiGórne. In: D Jankowska, M Krenz-Niedbała, J Piontek and J Wierzbicki, editors. Biological and cultural consequences of the transition to agriculture in Central Europe.Poznań: Wydawnictwo Naukowe UAM. 7-25.Google Scholar

  • Wright LE. 1997. Intertooth patterns of hypoplasia expression: implications for childhood health in the Classic Maya Collapse. Am J Phys Anthropol 102:233-47.CrossrefPubMedGoogle Scholar

  • Villalpando S. 2001. Feeding mode, infections, and anthropometric studies in early childhood. Pediatr 106:1282-83.Google Scholar

  • Zilberman U, Smith P, Piperno M, Condemi S. 2004. Evidence of amelogenesis imperfecta in an early African Homo erectus. J Hum Evol 46:647-53. CrossrefGoogle Scholar

About the article

Published Online: 2013-02-20

Published in Print: 2012-01-01


Citation Information: Anthropological Review, ISSN (Online) 2083-4594, ISSN (Print) 1898-6773, DOI: https://doi.org/10.2478/v10044-012-0005-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Novak, R. Howcroft, and R. Pinhasi
International Journal of Osteoarchaeology, 2017, Volume 27, Number 3, Page 398
[2]
Aleksandra Gawlikowska-Sroka, Barbara Kwiatkowska, Jacek Szczurowski, Stanisław Gronkiewicz, and Paweł Dąbrowski
Anthropological Review, 2016, Volume 79, Number 1

Comments (0)

Please log in or register to comment.
Log in