[1]

Abramowitz M. and Stegun I.,
Handbook of Mathematical Function with Formula, Graphs, and Mathematical Tables,
Dover, New York, 1992.
Google Scholar

[2]

Aubin T.,
Problèmes isopérimétrique et espaces de Sobolev,
J. Differential Geom. 11 (1976), 573–598.
Google Scholar

[3]

Badiale M. and Tarantello G.,
A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics,
Arch. Ration. Mech. Anal. 163 (2002), 259–293.
Google Scholar

[4]

Bertin G.,
Dynamics of Galaxies,
Cambridge University Press, Cambridge, 2000.
Google Scholar

[5]

Brézis H. and Lieb E.,
A relation between pointwise convergence of functions and convergence of functionals,
Proc. Amer. Math. Soc. 88 (1983), 486–490.
Google Scholar

[6]

Brézis H. and Nirenberg L.,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,
Comm. Pure Appl. Math. 36 (1983), 437–477.
Google Scholar

[7]

Caffarelli L. and Silvestre L.,
An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), 1245–1260.
Google Scholar

[8]

Chen W., Li C. and Ou B.,
Classification of solutions for an integral equation,
Comm. Pure Appl. Math. 59 (2006), 330–343.
Google Scholar

[9]

Ciotti L.,
Dynamical Models in Astrophysics,
Scuola Normale Superiore, Pisa, 2001.
Google Scholar

[10]

Cotsiolis A. and Travoularis N. K.,
Best constants for Sobolev inequalities for higher order fractional derivatives,
J. Math. Anal. Appl. 295 (2004), 225–236.
Google Scholar

[11]

Di Nezza E., Palatucci G. and Valdinoci E.,
Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math. 229 (2012), 521–573.
Google Scholar

[12]

Fabes E., Kenig C. and Serapioni R.,
The local regularity of solutions of degenerate elliptic equations,
Comm. Partial Differential Equations 7 (1982), 77–116.
Google Scholar

[13]

Frank R. L. and Seiringer R.,
Nonlinear ground state representations and sharp Hardy inequalities,
J. Funct. Anal. 255 (2008), 3407–3430.
Google Scholar

[14]

Han Q. and Lin F.,
Elliptic Partial Differential Equations,
American Mathematical Society, Providence, 2000.
Google Scholar

[15]

Lieb E. H. and Loss M.,
Analysis,
Grad. Stud. Math. 14,
American Mathematical Society, Providence, 2001.
Google Scholar

[16]

Lions P. L.,
The concentration-compactness principle in the calculus of variations. The limit case. I,
Rev. Mat. Iberoam. 1 (1985), no. 1, 145–201.
Google Scholar

[17]

Lions P. L.,
The concentration-compactness principle in the calculus of variations. The limit case. II,
Rev. Mat. Iberoam. 1 (1985), no. 2, 45–121.
Google Scholar

[18]

Mancini G., Fabbri I. and Sandeep K.,
Classification of solutions of a critical Hardy–Sobolev operator,
J. Differential Equations, 224 (2006), 258–276.
Google Scholar

[19]

Mancini G. and Sandeep K.,
Cylindrical symmetry of extremals of a Hardy–Sobolev inequality,
Ann. Mat. Pura Appl. (4) 183 (2004), 165–172.
Google Scholar

[20]

Palatucci G. and Pisante A.,
Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces,
Calc. Var. Partial Differential Equations 50 (2014), 799–829.
Google Scholar

[21]

Swayer E. and Wheeden R. L.,
Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces,
Amer. J. Math. 114 (1992), 813–874.
Google Scholar

[22]

Talenti G.,
Best constant in Sobolev inequality,
Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.
Google Scholar

[23]

Tan J. and Xiong J.,
A Harnack inequality for fractional Laplace equations with lower order terms,
Discrete Contin. Dyn. Syst. 31 (2011), 975–983.
Google Scholar

[24]

Yafaev D.,
Sharp constants in the Hardy–Rellich inequalities,
J. Funct. Anal. 168 (1999), 121–144.
Google Scholar

[25]

Yang J.,
Fractional Sobolev–Hardy inequality in ${\mathbb{R}}^{N}$,
Nonlinear Anal. 119 (2015), 179–185.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.