[1]

Arnold V. I., Kozlov V. V. and Neishtadt A. I.,
Mathematical Aspects of Classical and Celestial Mechanics. Dynamical Systems III,
Encyclopaedia Math. Sci. 3,
Springer, Berlin, 1993.
Google Scholar

[2]

Aulbach B. and Kieninger B.,
On three definitions of chaos,
Nonlinear Dyn. Syst. Theory 1 (2001), 23–37.
Google Scholar

[3]

Bekov A. A.,
Periodic solutions of the Gylden–Merscherskii problem,
Astron. Rep. 37 (1993), 651–654.
Google Scholar

[4]

Burns K. and Weiss H.,
A geometric criterion for positive topological entropy,
Comm. Math. Phys. 172 (1995), 95–118.
Google Scholar

[5]

Burton R. and Easton R. W.,
Ergodicity of linked twist maps,
Global Theory of Dynamical Systems (Evanston 1979),
Lecture Notes in Math. 819,
Springer, Berlin (1980), 35–49.
Google Scholar

[6]

Chu J., Torres P. J. and Wang F.,
Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem,
Discrete Contin. Dyn. Syst. A 35 (2015), no. 5, 1921–1932.
Google Scholar

[7]

Deprit A.,
The secular accelerations in Gylden’s problem,
Celestial Mech. 31 (1983), 1–22.
Google Scholar

[8]

Devaney R. L.,
Subshifts of finite type in linked twist mappings,
Proc. Amer. Math. Soc. 71 (1978), 334–338.
Google Scholar

[9]

Diacu F. and Selaru D.,
Chaos in the Gýlden problem,
J. Math. Phys. 39 (1998), 6537–6546.
Google Scholar

[10]

Hadjidemetriou J.,
Two-body problem with variable mass: A new approach,
Icarus 2 (1963), 440–451.
Google Scholar

[11]

Hadjidemetriou J.,
Analytic solutions of the two-body problem with variable mass,
Icarus 5 (1966), 34–46.
Google Scholar

[12]

Kennedy J. and Yorke J. A.,
Topological horseshoes,
Trans. Amer. Math. Soc. 353 (2001), 2513–2530.
Google Scholar

[13]

Margheri A., Rebelo C. and Zanolin F.,
Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps,
J. Differential Equations 249 (2010), 3233–3257.
Google Scholar

[14]

Medio A., Pireddu M. and Zanolin F.,
Chaotic dynamics for maps in one and two dimensions: A geometrical method and applications to economics,
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 3283–3309.
Google Scholar

[15]

Mischaikow K. and Mrozek M.,
Isolating neighborhoods and chaos,
Japan J. Indust. Appl. Math. 12 (1995), 205–236.
Google Scholar

[16]

Moser J.,
Stable and Random Motions in Dynamical Systems,
Ann. of Math. Stud. 77,
Princeton University Press, Princeton, 1973.
Google Scholar

[17]

Omarov T. B.,
The restricted problem of perturbed motion of two bodies with variable mass,
Soviet Astronomy 8 (1964), 127–131.
Google Scholar

[18]

Omarov T. B.,
Two-body motion with corpuscular radiation,
Soviet Astronomy 7 (1964), 707–719.
Google Scholar

[19]

Pal A., Selaru D., Mioc V. and Cucu-Dumitrescu C.,
The Gyldén-type problem revisited: More refined analytical solutions,
Astron. Nachr. 327 (2006), 304–308.
Google Scholar

[20]

Papini D. and Zanolin F.,
On the periodic boundary value problem and chaotic-like dynamics for nonlinear Hill’s equations,
Adv. Nonlinear Stud. 4 (2004), 71–91.
Google Scholar

[21]

Pascoletti A., Pireddu M. and Zanolin F.,
Multiple periodic solutions and complex dynamics for second order ODEs via linked twist maps,
Electron. J. Qual. Theory Differ. Equ. 14 (2008), 1–32.
Google Scholar

[22]

Pascoletti A. and Zanolin F.,
Example of a suspension bridge ODE model exhibiting chaotic dynamics: A topological approach,
J. Math. Anal. Appl. 339 (2008), 1179–1198.
Google Scholar

[23]

Przytycki F.,
Ergodicity of toral linked twist mappings,
Ann. Sci. École Norm. Sup. 16 (1983), 345–354.
Google Scholar

[24]

Przytycki F.,
Periodic points of linked twist mappings,
Studia Math. Sup. 83 (1986), 1–18.
Google Scholar

[25]

Saslaw W. C.,
Motion around a source whose luminosity changes,
Astrophys. J. 226 (1978), 240–252.
Google Scholar

[26]

Selaru D., Cucu-Dumitrescu C. and Mioc V.,
On a two-body problem with periodically changing equivalent gravitational parameter,
Astron. Nachr. 313 (1993), 257–263.
Google Scholar

[27]

Selaru D. and Mioc V.,
Le probleme de Gyldén du point de vue de la théorie KAM,
C. R. Acad. Sci. Paris Sér. II b 325 (1997), 487–490.
Google Scholar

[28]

Selaru D., Mioc V. and Cucu-Dumitrescu C.,
The periodic Gyldén-type problem in astrophysics,
AIP Conf. Proc. 895 (2007), 163–170.
Google Scholar

[29]

Srzednicki R.,
A generalization of the Lefschetz fixed point theorem and detection of chaos,
Proc. Amer. Math. Soc. 128 (2000), 1231–1239.
Google Scholar

[30]

Sturman R., Ottino J. M. and Wiggins S.,
The Mathematical Foundations of Mixing. The Linked Twist Map as a Paradigm in Applications. Micro to Macro, Fluids to Solids,
Cambridge Monogr. Appl. Comput. Math. 22,
Cambridge University Press, Cambridge, 2006.
Google Scholar

[31]

Torres P. J.,
Mathematical Models with Singularities. A Zoo of Singular Creatures,
Atlantis Briefs Differ. Equ. 1,
Atlantis Press, Amsterdam, 2015.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.