Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Nonlinear Studies

Editor-in-Chief: Ahmad, Shair

4 Issues per year


IMPACT FACTOR 2017: 1.029
5-year IMPACT FACTOR: 1.147

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 1.588
Source Normalized Impact per Paper (SNIP) 2017: 0.971

Mathematical Citation Quotient (MCQ) 2017: 1.03

Online
ISSN
2169-0375
See all formats and pricing
More options …
Volume 17, Issue 2

Issues

On Aharonov–Bohm Operators with Two Colliding Poles

Laura Abatangelo / Veronica Felli
  • Corresponding author
  • Dipartimento di Scienza dei Materiali, Università di Milano–Bicocca, Via Cozzi 55, 20125 Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Corentin Léna
Published Online: 2017-03-18 | DOI: https://doi.org/10.1515/ans-2017-0004

Abstract

We consider Aharonov–Bohm operators with two poles and prove sharp asymptotics for simple eigenvalues as the poles collapse at an interior point out of nodal lines of the limit eigenfunction.

Keywords: Asymptotics of Eigenvalues; Aharonov–Bohm Operators

MSC 2010: 35P20; 35P15; 35J10

Dedicated to Professor Ireneo Peral on the occasion of his 70th birthday

References

  • [1]

    Abatangelo L. and Felli V., Sharp asymptotic estimates for eigenvalues of Aharonov–Bohm operators with varying poles, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3857–3903. Google Scholar

  • [2]

    Abatangelo L. and Felli V., On the leading term of the eigenvalue variation for Aharonov–Bohm operators with a moving pole, SIAM J. Math. Anal. 48 (2016), no. 4, 2843–2868. Google Scholar

  • [3]

    Abatangelo L., Felli V., Hillairet L. and Léna C., Spectral stability under removal of small capacity sets and applications to Aharonov–Bohm operators, preprint 2016, https://arxiv.org/abs/1611.06750.

  • [4]

    Abatangelo L., Felli V., Noris B. and Nys M., Sharp boundary behavior of eigenvalues for Aharonov–Bohm operators with varying poles, preprint 2016, https://arxiv.org/abs/1605.09569.

  • [5]

    Alziary B., Fleckinger-Pellé J. and Takáč P., Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in 2, Math. Methods Appl. Sci. 26 (2003), no. 13, 1093–1136. Google Scholar

  • [6]

    Bondy J. A. and Murty U. S. R., Graph Theory with Applications, American Elsevier Publishing, New York, 1976. Google Scholar

  • [7]

    Bonnaillie-Noël V. and Helffer B., Numerical analysis of nodal sets for eigenvalues of Aharonov–Bohm Hamiltonians on the square with application to minimal partitions, Exp. Math. 20 (2011), no. 3, 304–322. Google Scholar

  • [8]

    Bonnaillie-Noël V. and Helffer B., Nodal and spectral minimal partitions – The state of the art in 2015 –, preprint 2015, https://arxiv.org/abs/1506.07249.

  • [9]

    Bonnaillie-Noël V., Helffer B. and Hoffmann-Ostenhof T., Aharonov–Bohm Hamiltonians, isospectrality and minimal partitions, J. Phys. A 42 (2009), no. 18, Article ID 185203. Google Scholar

  • [10]

    Bonnaillie-Noël V., Noris B., Nys M. and Terracini S., On the eigenvalues of Aharonov–Bohm operators with varying poles, Anal. PDE 7 (2014), no. 6, 1365–1395. Google Scholar

  • [11]

    Courtois G., Spectrum of manifolds with holes, J. Funct. Anal. 134 (1995), no. 1, 194–221. Google Scholar

  • [12]

    Felli V., Ferrero A. and Terracini S., Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 1, 119–174. Google Scholar

  • [13]

    Helffer B., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T. and Owen M. P., Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys. 202 (1999), no. 3, 629–649. Google Scholar

  • [14]

    Helffer B. and Hoffmann-Ostenhof T., On a magnetic characterization of spectral minimal partitions, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2081–2092. Google Scholar

  • [15]

    Helffer B., Hoffmann-Ostenhof T. and Terracini S., Nodal domains and spectral minimal partitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 1, 101–138. Google Scholar

  • [16]

    Laptev A. and Weidl T., Hardy inequalities for magnetic Dirichlet forms, Mathematical Results in Quantum Mechanics (Prague 1998), Oper. Theory Adv. Appl. 108, Birkhäuser, Basel (1999), 299–305. Google Scholar

  • [17]

    Leinfelder H., Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory 9 (1983), no. 1, 163–179. Google Scholar

  • [18]

    Léna C., Eigenvalues variations for Aharonov–Bohm operators, J. Math. Phys. 56 (2015), 10.1063/1.4905647. Google Scholar

  • [19]

    Noris B., Nys M. and Terracini S., On the eigenvalues of Aharonov–Bohm operators with varying poles: Pole approaching the boundary of the domain, Comm. Math. Phys. 339 (2015), no. 3, 1101–1146. Google Scholar

  • [20]

    Noris B. and Terracini S., Nodal sets of magnetic Schrödinger operators of Aharonov–Bohm type and energy minimizing partitions, Indiana Univ. Math. J. 59 (2010), no. 4, 1361–1403. Google Scholar

About the article


Received: 2016-12-14

Accepted: 2017-01-31

Published Online: 2017-03-18

Published in Print: 2017-05-01


Funding Source: European Research Council

Award identifier / Grant number: 339958

Funding Source: Ministero dell’Istruzione, dell’Università e della Ricerca

Award identifier / Grant number: 201274FYK7_008

The authors have been partially supported by the project ERC Advanced Grant 2013 n. 339958: “Complex Patterns for Strongly Interacting Dynamical Systems – COMPAT”, funded by the European Research Council. V. Felli is partially supported by PRIN-2012-grant n. 201274FYK7_008: “Variational and perturbative aspects of nonlinear differential problems”, funded by the Ministero dell’Istruzione, dell’Università e della Ricerca.


Citation Information: Advanced Nonlinear Studies, Volume 17, Issue 2, Pages 283–296, ISSN (Online) 2169-0375, ISSN (Print) 1536-1365, DOI: https://doi.org/10.1515/ans-2017-0004.

Export Citation

© 2017 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in