[1]

N. D. Alikakos,
${L}^{p}$ bounds of solutions of reaction-diffusion equations,
Comm. Partial Differential Equations 4 (1979), 827–868.
Google Scholar

[2]

C. Bandle,
Isoperimetric Inequalities and Applications,
Pitman, London, 1980.
Google Scholar

[3]

P. Biler, D. Hilhorst and T. Nadzieja,
Existence and nonexistence of solutions for a model of gravitational interaction of particles, II,
Colloq. Math. 67 (1994), 297–308.
CrossrefGoogle Scholar

[4]

P. Biler, G. Karch, P. Laurençot and T. Nadzieja,
The $8\pi $-problem for radially symmetric solutions of a chemotaxis model in the plane,
Math. Methods Appl. Sci. 29 (2006), 1563–1583.
Google Scholar

[5]

P. Biler and T. Nadzieja,
Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,
Colloq. Math. 66 (1994), 319–334.
Google Scholar

[6]

A. Blanchet, E. Carlen and J. A. Carrillo,
Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model,
J. Funct. Anal. 262 (2012), 2142–2230.
CrossrefGoogle Scholar

[7]

A. Blanchet, J. A. Carrillo and N. Masmoudi,
Infinite time aggregation for the critical Patlak–Keller–Segel model in ${\mathbb{R}}^{2}$,
Comm. Pure Appl. Math. 61 (2008), 1449–1481.
Google Scholar

[8]

A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernández,
Asymptotic behavior for small mass in the two-dimensional parabolic-elliptic Keller–Segel model,
J. Math. Anal. Appl. 361 (2010), 533–542.
CrossrefGoogle Scholar

[9]

A. Blanchet, J. Dolbeault and B. Perthame,
Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions,
Electron. J. Differential Equations 2006 (2006), Paper No. 44.
Google Scholar

[10]

J. Campos and J. Dolbeault,
Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane,
Comm. Partial Differential Equations 39 (2014), 806–841.
CrossrefGoogle Scholar

[11]

E. A. Carlen and A. Figalli,
Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation,
Duke Math. J. 162 (2013), 579–625.
CrossrefGoogle Scholar

[12]

S. Childress and J. K. Percus,
Nonlinear aspects of chemotaxis,
Math. Biosci. 56 (1981), 217–237.
CrossrefGoogle Scholar

[13]

J. I. Díaz and T. Nagai,
Symmetrization in a parabolic-elliptic system related to chemotaxis,
Adv. Math. Sci. Appl. 5 (1995), 659–680.
Google Scholar

[14]

J. I. Díaz, T. Nagai and J. M. Rakotoson,
Symmetrization techniques on unbounded domains: Application to a chemotaxis system in ${\mathbb{R}}^{N}$,
J. Differential Equations 145 (1998), 156–183.
Google Scholar

[15]

M. A. Herrero and J. J. L. Velázquez,
Singularity patterns in a chemotaxis model,
Math. Ann. 306 (1996), 583–623.
CrossrefGoogle Scholar

[16]

T. Hillen and K. J. Painter,
A user’s guide to PDE models for chemotaxis,
J. Math. Biol. 58 (2008), 183–217.
Google Scholar

[17]

D. Horstmann,
From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. I,
Jahresber. Dtsch. Math.-Ver. 105 (2003), 103–165.
Google Scholar

[18]

W. Jäger and S. Luckhaus,
On explosions of solutions to a system of partial differential equations modeling chemotaxis,
Trans. Amer. Math. Soc. 329 (1992), 819–824.
CrossrefGoogle Scholar

[19]

E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability,
J. Theoret. Biol. 26 (1970), 399–415.
CrossrefGoogle Scholar

[20]

M. Kurokiba, T. Nagai and T. Ogawa,
The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system,
Commun. Pure Appl. Anal. 5 (2006), 97–106.
Google Scholar

[21]

M. Kurokiba and T. Ogawa,
Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,
Differential Integral Equations 16 (2003), 427–452.
Google Scholar

[22]

E. H. Lieb and M. Loss,
Analysis,
Grad. Stud. Math. 14,
American Mathematical Society, Providence, 2001.
Google Scholar

[23]

J. López-Gómez, T. Nagai and T. Yamada,
The basin of attraction of the steady-states for a chemotaxis model in ${\mathbb{R}}^{2}$ with critical mass,
Arch. Ration. Mech. Anal. 207 (2013), 159–184.
Google Scholar

[24]

J. López-Gómez, T. Nagai and T. Yamada,
Non-trivial $\omega -$limit sets and oscillating solutions in a chemotaxis model in ${\mathbb{R}}^{2}$ with critical mass,
J. Funct. Anal. 266 (2014), 3455–3507.
Google Scholar

[25]

S. Luckhaus, Y. Sugiyama and J. J. L. Velázquez,
Measure valued solutions of the 2D Keller–Segel system,
Arch. Ration. Mech. Anal. 206 (2012), 31–80.
CrossrefGoogle Scholar

[26]

N. Mizoguchi and T. Senba,
Type II blowup solutions to a simplified chemotaxis system,
Adv. Differential Equations 17 (2007), 505–545.
Google Scholar

[27]

J. Mossino,
Inégalités isopérimétriques et applications en physique,
Hermann, Paris, 1984.
Google Scholar

[28]

T. Nagai,
Blow-up of radially symmetric solutions to a chemotaxis system,
Adv. Math. Sci. Appl. 5 (1995), 581–601.
Google Scholar

[29]

T. Nagai,
Convergence to self-similar solutions for a parabolic-elliptic system of drift-diffusion type in ${\mathbb{R}}^{2}$,
Adv. Differential Equations 16 (2011), 839–866.
Google Scholar

[30]

T. Nagai,
Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in ${\mathbb{R}}^{2}$,
Differential Integral Equations 24 (2011), 29–68.
Google Scholar

[31]

T. Nagai and T. Ogawa,
Brezis-Merle inequalities and applications to the global existence of the Cauchy problem of the Keller–Segel system,
Commun. Contemp. Math. 13 (2011), 795–812.
CrossrefGoogle Scholar

[32]

T. Nagai and T. Ogawa,
Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in ${\mathbb{R}}^{2}$,
Funkcial. Ekvac. 59 (2016), 67–112.
Google Scholar

[33]

J. M. Rakotoson,
Réarrangement relatif: Un instrument d’estimations dans les problèmes aux limites,
Springer, Berlin, 2008.
Google Scholar

[34]

T. Senba,
Grow-up rate of a radial solution for a parabolic-elliptic system in ${\mathbb{R}}^{2}$,
Adv. Differential Equations 14 (2009), 1155–1192.
Google Scholar

[35]

T. Senba,
Bounded and unbounded oscillating solutions to a parabolic-elliptic system in two dimensional space,
Commun. Pure Appl. Anal. 12 (2013), 1861–1880.
CrossrefGoogle Scholar

[36]

T. Senba and T. Suzuki,
Chemotactic collapse in a parabolic-elliptic system of mathematical biology,
Adv. Differential Equations 6 (2001), 21–50.
Google Scholar

[37]

T. Suzuki,
Free Energy and Self-Interacting Particles,
Progr. Nonlinear Differential Equations Appl. 62,
Birkhäuser, Boston, 2005.
Google Scholar

[38]

G. Wolansky,
On steady distributions of self-attracting clusters under friction and fluctuations,
Arch. Rational Mech. Anal. 119 (1992), 355–391.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.