[1]

H. Bae,
Existence and analyticity of Lei–Lin solution to the Navier–Stokes equations,
Proc. Amer. Math. Soc. 143 (2015), no. 7, 2887–2892.
CrossrefGoogle Scholar

[2]

H. Bae, A. Biswas and E. Tadmor,
Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces,
Arch. Ration. Mech. Anal. 205 (2012), no. 3, 963–991.
CrossrefGoogle Scholar

[3]

H. Bahouri, J.-Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren Math. Wiss. 343,
Springer, Heidelberg, 2011.
Google Scholar

[4]

A. Biswas,
Gevrey regularity for a class of dissipative equations with applications to decay,
J. Differential Equations 253 (2012), no. 10, 2739–2764.
CrossrefGoogle Scholar

[5]

A. Biswas, V. R. Martinez and P. Silva,
On Gevrey regularity of the supercritical SQG equation in critical Besov spaces,
J. Funct. Anal. 269 (2015), no. 10, 3083–3119.
CrossrefGoogle Scholar

[6]

A. Biswas and D. Swanson,
Gevrey regularity of solutions to the 3-D Navier–Stokes equations with weighted ${l}_{p}$ initial data,
Indiana Univ. Math. J. 56 (2007), no. 3, 1157–1188.
Google Scholar

[7]

M. Cannone,
Harmonic analysis tools for solving the incompressible Navier–Stokes equations,
Handbook of Mathematical Fluid Dynamics. Vol. III,
North-Holland, Amsterdam (2004), 161–244.
Google Scholar

[8]

M. Chae, K. Kang and J. Lee,
Existence of smooth solutions to coupled chemotaxis-fluid equations,
Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2271–2297.
Google Scholar

[9]

M. Chae, K. Kang and J. Lee,
Global existence and temporal decay in Keller–Segel models coupled to fluid equations,
Comm. Partial Differential Equations 39 (2014), no. 7, 1205–1235.
CrossrefGoogle Scholar

[10]

M. Chae, K. Kang and J. Lee,
Asymptotic behaviors of solutions for an aerotaxis model coupled to fluid equations,
J. Korean Math. Soc. 53 (2016), no. 1, 127–146.
CrossrefGoogle Scholar

[11]

J.-Y. Chemin,
Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel,
J. Anal. Math. 77 (1999), 27–50.
CrossrefGoogle Scholar

[12]

J.-Y. Chemin, M. Paicu and P. Zhang,
Global large solutions to 3-D inhomogeneous Navier–Stokes system with one slow variable,
J. Differential Equations 256 (2014), no. 1, 223–252.
CrossrefGoogle Scholar

[13]

L. Chen, G. Lu and X. Luo,
Boundedness of multi-parameter Fourier multiplier operators on Triebel–Lizorkin and Besov–Lipschitz spaces,
Nonlinear Anal. 134 (2016), 55–69.
CrossrefGoogle Scholar

[14]

H. J. Choe and B. Lkhagvasuren,
Global existence result for chemotaxis Navier–Stokes equations in the critical Besov spaces,
J. Math. Anal. Appl. 446 (2017), no. 2, 1415–1426.
CrossrefGoogle Scholar

[15]

H. J. Choe, B. Lkhagvasuren and M. Yang,
Wellposedness of the Keller–Segel Navier–Stokes equations in the critical Besov spaces,
Commun. Pure Appl. Anal. 14 (2015), no. 6, 2453–2464.
CrossrefGoogle Scholar

[16]

W. Dai and G. Lu,
${L}^{p}$ estimates for multi-linear and multi-parameter pseudo-differential operators,
Bull. Soc. Math. France 143 (2015), no. 3, 567–597.
Google Scholar

[17]

R. Danchin,
Local theory in critical spaces for compressible viscous and heat-conductive gases,
Comm. Partial Differential Equations 26 (2001), no. 7–8, 1183–1233.
CrossrefGoogle Scholar

[18]

R. Danchin,
Fourier analysis methods for PDEs,
Lecture Notes (2005).

[19]

R. Duan, A. Lorz and P. Markowich,
Global solutions to the coupled chemotaxis-fluid equations,
Comm. Partial Differential Equations 35 (2010), no. 9, 1635–1673.
CrossrefGoogle Scholar

[20]

C. Foias and R. Temam,
Gevrey class regularity for the solutions of the Navier–Stokes equations,
J. Funct. Anal. 87 (1989), no. 2, 359–369.
CrossrefGoogle Scholar

[21]

H. Fujita and T. Kato,
On the Navier–Stokes initial value problem. I,
Arch. Ration. Mech. Anal. 16 (1964), 269–315.
CrossrefGoogle Scholar

[22]

G. Gui and P. Zhang,
Stability to the global large solutions of 3-D Navier–Stokes equations,
Adv. Math. 225 (2010), no. 3, 1248–1284.
CrossrefGoogle Scholar

[23]

J. Huang, M. Paicu and P. Zhang,
Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity,
Arch. Ration. Mech. Anal. 209 (2013), no. 2, 631–682.
CrossrefGoogle Scholar

[24]

J. Jiang, H. Wu and S. Zheng,
Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains,
Asymptot. Anal. 92 (2015), no. 3–4, 249–258.
Google Scholar

[25]

T. Kato,
Strong ${L}^{p}$-solutions of the Navier–Stokes equation in ${\mathbf{R}}^{m}$, with applications to weak solutions,
Math. Z. 187 (1984), no. 4, 471–480.
Google Scholar

[26]

H. Koch and D. Tataru,
Well-posedness for the Navier–Stokes equations,
Adv. Math. 157 (2001), no. 1, 22–35.
CrossrefGoogle Scholar

[27]

H. Kozono and M. Yamazaki,
Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data,
Comm. Partial Differential Equations 19 (1994), 959–1014.
CrossrefGoogle Scholar

[28]

Z. Lei and F. Lin,
Global mild solutions of Navier–Stokes equations,
Comm. Pure Appl. Math. 64 (2011), no. 9, 1297–1304.
CrossrefGoogle Scholar

[29]

J. Leray,
Sur le mouvement d’un liquide visqueux emplissant l’espace,
Acta Math. 63 (1934), no. 1, 193–248.
CrossrefGoogle Scholar

[30]

J.-G. Liu and A. Lorz,
A coupled chemotaxis-fluid model: Global existence,
Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 5, 643–652.
CrossrefGoogle Scholar

[31]

Q. Liu,
Gevrey analyticity of solutions to the 3D nematic liquid crystal flows in critical Besov space,
Nonlinear Anal. Real World Appl. 31 (2016), 431–451.
CrossrefGoogle Scholar

[32]

A. Lorz,
Coupled chemotaxis fluid model,
Math. Models Methods Appl. Sci. 20 (2010), no. 6, 987–1004.
CrossrefGoogle Scholar

[33]

A. Lorz,
A coupled Keller–Segel–Stokes model: Global existence for small initial data and blow-up delay,
Commun. Math. Sci. 10 (2012), no. 2, 555–574.
CrossrefGoogle Scholar

[34]

M. Paicu,
Équation anisotrope de Navier–Stokes dans des espaces critiques,
Rev. Mat. Iberoam. 21 (2005), no. 1, 179–235.
Google Scholar

[35]

M. Paicu and P. Zhang,
Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces,
Comm. Math. Phys. 307 (2011), no. 3, 713–759.
CrossrefGoogle Scholar

[36]

M. Paicu and P. Zhang,
Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system,
J. Funct. Anal. 262 (2012), no. 8, 3556–3584.
CrossrefGoogle Scholar

[37]

F. Planchon,
Sur un inégalité de type Poincaré,
C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 1, 21–23.
CrossrefGoogle Scholar

[38]

E. M. Stein,
Singular Integrals and Differentiability Properties of Functions,
Princeton Math. Ser. 30,
Princeton University Press, Princeton, 1970.
Google Scholar

[39]

Y. Tao,
Boundedness in a chemotaxis model with oxygen consumption by bacteria,
J. Math. Anal. Appl. 381 (2011), no. 2, 521–529.
CrossrefGoogle Scholar

[40]

I. Tuval, L. Cisneros, C. Dombrowski, W. Wolgemuth, O. Kessler and E. Goldstein,
Bacterial swimming and oxygen transport near contact lines,
Proc. Natl. Acad. Sci. USA 102 (2005), no. 7, 2277–2282.
CrossrefGoogle Scholar

[41]

B. Wang, Z. Huo, C. Hao and Z. Guo,
Harmonic Analysis Method for Nonlinear Evolution Equations. I,
World Scientific Publishing, Hackensack, 2011.
Google Scholar

[42]

M. Winkler,
Global large-data solutions in a chemotaxis-Navier–Stokes system modeling cellular swimming in fluid drops,
Comm. Partial Differential Equations 37 (2012), no. 2, 319–351.
CrossrefGoogle Scholar

[43]

M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier–Stokes system,
Arch. Ration. Mech. Anal. 211 (2014), no. 2, 455–487.
CrossrefGoogle Scholar

[44]

M. Winkler,
Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system,
Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 5, 1329–1352.
CrossrefGoogle Scholar

[45]

J. Xiao,
Homothetic variant of fractional Sobolev space with application to Navier–Stokes system,
Dyn. Partial Differ. Equ. 4 (2007), no. 3, 227–245.
CrossrefGoogle Scholar

[46]

J. Xiao,
Homothetic variant of fractional Sobolev space with application to Navier–Stokes system revisited,
Dyn. Partial Differ. Equ. 11 (2014), no. 2, 167–181.
CrossrefGoogle Scholar

[47]

M. Yang, Z. Fu and J. Sun,
Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces,
Sci. China Math. 60 (2017), no. 10, 1837–1856.
CrossrefGoogle Scholar

[48]

M. Yang and J. Sun,
Gevrey regularity and existence of Navier–Stokes–Nernst–Planck–Poisson system in critical Besov spaces,
Commun. Pure Appl. Anal. 16 (2017), no. 5, 1617–1639.
CrossrefGoogle Scholar

[49]

C. Zhai and T. Zhang,
Global well-posedness to the 3-D incompressible inhomogeneous Navier–Stokes equations with a class of large velocity,
J. Math. Phys. 56 (2015), no. 9, Article ID 091512.
Google Scholar

[50]

Q. Zhang,
Local well-posedness for the chemotaxis-Navier–Stokes equations in Besov spaces,
Nonlinear Anal. Real World Appl. 17 (2014), 89–100.
CrossrefGoogle Scholar

[51]

Q. Zhang and X. Zheng,
Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations,
SIAM J. Math. Anal. 46 (2014), no. 4, 3078–3105.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.