Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Nonlinear Studies

Editor-in-Chief: Ahmad, Shair


IMPACT FACTOR 2018: 1.650

CiteScore 2018: 1.49

SCImago Journal Rank (SJR) 2018: 1.422
Source Normalized Impact per Paper (SNIP) 2018: 0.865

Mathematical Citation Quotient (MCQ) 2018: 1.19

Online
ISSN
2169-0375
See all formats and pricing
More options …
Volume 19, Issue 2

Issues

A Variational Approach for the Neumann Problem in Some FLRW Spacetimes

Cristian Bereanu
  • Faculty of Mathematics, University of Bucharest, 14 Academiei Street, 70109 Bucharest; and Institute of Mathematics “Simion Stoilow” Romanian Academy, 21 Calea Grivitei, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro J. Torres
Published Online: 2018-09-10 | DOI: https://doi.org/10.1515/ans-2018-2030

Abstract

In this paper, we study, using critical point theory for strongly indefinite functionals, the Neumann problem associated to some prescribed mean curvature problems in a FLRW spacetime with one spatial dimension. We assume that the warping function is even and positive and the prescribed mean curvature function is odd and sublinear. Then, we show that our problem has infinitely many solutions. The keypoint is that our problem has a Hamiltonian formulation. The main tool is an abstract result of Clark type for strongly indefinite functionals.

Keywords: Quasilinear Elliptic Equation; Critical Point Theory; Hamiltonian Systems; FLRW Spacetime; Prescribed Mean Curvature; Neumann Problem

MSC 2010: 35J25; 58E05; 70H05; 53C42; 53C50

References

  • [1]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519–543. CrossrefGoogle Scholar

  • [2]

    A. Bahri and H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), no. 4, 403–442. CrossrefGoogle Scholar

  • [3]

    A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), no. 3–4, 143–197. CrossrefGoogle Scholar

  • [4]

    R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), no. 1, 131–152. CrossrefGoogle Scholar

  • [5]

    T. Bartsch and Z. Liu, Location and critical groups of critical points in Banach spaces with an application to nonlinear eigenvalue problems, Adv. Differential Equations 9 (2004), no. 5–6, 645–676. Google Scholar

  • [6]

    T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3555–3561. CrossrefGoogle Scholar

  • [7]

    V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241–273. CrossrefGoogle Scholar

  • [8]

    C. Bereanu, P. Jebelean and J. Mawhin, Variational methods for nonlinear perturbations of singular ϕ-Laplacians, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), no. 1, 89–111. Google Scholar

  • [9]

    C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities, Calc. Var. Partial Differential Equations 46 (2013), no. 1–2, 113–122. CrossrefWeb of ScienceGoogle Scholar

  • [10]

    C. Bereanu, P. Jebelean and P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013), no. 1, 270–287. Web of ScienceCrossrefGoogle Scholar

  • [11]

    P. L. Felmer, Periodic solutions of “superquadratic” Hamiltonian systems, J. Differential Equations 102 (1993), no. 1, 188–207. CrossrefGoogle Scholar

  • [12]

    Z. Liu and Z.-Q. Wang, On Clark’s theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 5, 1015–1037. CrossrefGoogle Scholar

  • [13]

    J. Mawhin and P. J. Torres, Prescribed mean curvature graphs with Neumann boundary conditions in some FLRW spacetimes, J. Differential Equations 261 (2016), no. 12, 7145–7156. CrossrefWeb of ScienceGoogle Scholar

  • [14]

    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986. Google Scholar

  • [15]

    B. S. Ryden, Introduction to Cosmology, Pearson, London, 2014. Google Scholar

  • [16]

    P. J. Torres, The prescribed mean curvature problem with Neumann boundary conditions in FLRW spacetimes, Rend. Istit. Mat. Univ. Trieste 49 (2017), 19–25. Google Scholar

About the article


Received: 2018-04-22

Accepted: 2018-08-22

Published Online: 2018-09-10

Published in Print: 2019-05-01


Funding Source: Ministerio de Economía, Industria y Competitividad, Gobierno de España

Award identifier / Grant number: MTM2017-82348-C2-1-P

Pedro J. Torres was partially supported by Spanish MINECO and ERDF project MTM2017-82348-C2-1-P.


Citation Information: Advanced Nonlinear Studies, Volume 19, Issue 2, Pages 413–423, ISSN (Online) 2169-0375, ISSN (Print) 1536-1365, DOI: https://doi.org/10.1515/ans-2018-2030.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in