Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Nonlinear Studies

Editor-in-Chief: Ahmad, Shair


IMPACT FACTOR 2018: 1.650

CiteScore 2018: 1.49

SCImago Journal Rank (SJR) 2018: 1.422
Source Normalized Impact per Paper (SNIP) 2018: 0.865

Mathematical Citation Quotient (MCQ) 2018: 1.19

Online
ISSN
2169-0375
See all formats and pricing
More options …
Volume 19, Issue 3

Issues

Reverse Stein–Weiss Inequalities on the Upper Half Space and the Existence of Their Extremals

Lu Chen / Guozhen Lu / Chunxia Tao
Published Online: 2019-01-22 | DOI: https://doi.org/10.1515/ans-2018-2038

Abstract

The purpose of this paper is four-fold. First, we employ the reverse weighted Hardy inequality in the form of high dimensions to establish the following reverse Stein–Weiss inequality on the upper half space:

+n+n|x|α|x-y|λf(x)g(y)|y|βdydxCn,α,β,p,qfLq(+n)gLp(+n)

for any nonnegative functions fLq(+n), gLp(+n), and p,q(0,1), β<1-np or α<-nq, λ>0 satisfying

n-1n1p+1q-α+β+λ-1n=2.

Second, we show that the best constant of the above inequality can be attained. Third, for a weighted system analogous to the Euler–Lagrange equations of the reverse Stein–Weiss inequality, we obtain the necessary conditions of existence for any positive solutions using the Pohozaev identity. Finally, in view of the stereographic projection, we give a spherical form of the Stein–Weiss inequality and reverse Stein–Weiss inequality on the upper half space +n.

Keywords: Sharp Constants; Existence of Extremal Functions; Reverse Stein–Weiss Inequality; Reverse Hardy–Littlewood–Sobolev Inequality; Pohozaev Identity; Stereographic Projection

MSC 2010: 42B37; 42B35; 35B40; 45G15

References

  • [1]

    W. Beckner, Geometric inequalities in Fourier anaylsis Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton 1991), Princeton Math. Ser. 42, Princeton University, Princeton (1995), 36–68. Google Scholar

  • [2]

    W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1897–1905. Google Scholar

  • [3]

    W. Beckner, Sharp inequalities and geometric manifolds, J. Fourier Anal. Appl. 3 (1997), 825–836. CrossrefGoogle Scholar

  • [4]

    W. Beckner, Pitt’s inequality with sharp convolution estimates, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1871–1885. Google Scholar

  • [5]

    W. Beckner, Weighted inequalities and Stein–Weiss potentials, Forum Math. 20 (2008), no. 4, 587–606. Web of ScienceGoogle Scholar

  • [6]

    W. Beckner, Multilinear embedding estimates for the fractional Laplacian, Math. Res. Lett. 19 (2012), no. 1, 175–189. CrossrefGoogle Scholar

  • [7]

    W. Beckner, Functionals for multilinear fractional embedding, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 1, 1–28. CrossrefGoogle Scholar

  • [8]

    E. A. Carlen, J. A. Carrillo and M. Loss, Hardy–Littlewood–Sobolev inequalities via fast diffusion flows, Proc. Natl. Acad. Sci. USA 107 (2010), no. 46, 19696–19701. CrossrefGoogle Scholar

  • [9]

    E. Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. IMRN 2009 (2009), no. 16, 3127–3145. CrossrefGoogle Scholar

  • [10]

    L. Chen, Z. Liu and G. Lu, Symmetry and regularity of solutions to the weighted Hardy–Sobolev type system, Adv. Nonlinear Stud. 16 (2016), no. 1, 1–13. CrossrefWeb of ScienceGoogle Scholar

  • [11]

    L. Chen, Z. Liu, G. Lu and C. Tao, Reverse Stein–Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8429–8450. CrossrefGoogle Scholar

  • [12]

    L. Chen, Z. Liu, G. Lu and C. Tao, Stein–Weiss inequalities with the fractional Poisson kernel, preprint (2018), https://arxiv.org/abs/1807.04906; to appear in Rev. Mat. Iberoam.

  • [13]

    L. Chen, G. Lu and C. Tao, Existence of extremal functions for the Stein–Weiss inequalities on the Heisenberg group, preprint (2018), https://arxiv.org/abs/1807.04699.

  • [14]

    L. Chen, G. Lu and C. Tao, Hardy–Littlewood–Sobolev inequality with fractional Poisson kernel and its appliaction in PDEs, Acta Math. Sin. (Engl. Ser.), to appear. Google Scholar

  • [15]

    W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy–Littlewood–Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst. 2005 (2005), 164–172. Google Scholar

  • [16]

    W. Chen and C. Li, The best constant in a weighted Hardy–Littlewood–Sobolev inequality, Proc. Amer. Math. Soc. 136 (2008), no. 3, 955–962. Google Scholar

  • [17]

    J. Dou, Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space, Commun. Contemp. Math. 18 (2016), no. 5, Article ID 1550067. Web of ScienceGoogle Scholar

  • [18]

    J. Dou and M. Zhu, Reversed Hardy–Littewood–Sobolev inequality, Int. Math. Res. Not. IMRN 2015 (2015), no. 19, 9696–9726. CrossrefGoogle Scholar

  • [19]

    J. Dou and M. Zhu, Sharp Hardy–Littlewood–Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN 2015 (2015), no. 3, 651–687. CrossrefGoogle Scholar

  • [20]

    P. Drábek, H. P. Heinig and A. Kufner, Higher-dimensional Hardy inequality, General Inequalities. 7 (Oberwolfach 1995), Internat. Ser. Numer. Math. 123, Birkhäuser, Basel (1997), 3–16. Google Scholar

  • [21]

    R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality, Calc. Var. Partial Differential Equations 39 (2010), no. 1–2, 85–99. CrossrefWeb of ScienceGoogle Scholar

  • [22]

    R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy–Littlewood–Sobolev inequality, Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel (2012), 55–67. Google Scholar

  • [23]

    R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176 (2012), no. 1, 349–381. Web of ScienceCrossrefGoogle Scholar

  • [24]

    X. Han, Existence of maximizers for Hardy–Littlewood–Sobolev inequalities on the Heisenberg group, Indiana Univ. Math. J. 62 (2013), no. 3,737–751. Web of ScienceCrossrefGoogle Scholar

  • [25]

    X. Han, G. Lu and J. Zhu, Hardy–Littlewood–Sobolev and Stein–Weiss inequalities and integral systems on the Heisenberg group, Nonlinear Anal. 75 (2012), no. 11, 4296–4314. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    F. Hang, X. Wang and X. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math. 61 (2008), no. 1, 54–95. CrossrefGoogle Scholar

  • [27]

    G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565–606. CrossrefGoogle Scholar

  • [28]

    I. W. Herbst, Spectral theory of the operator (p2+m2)1/2-Ze2/r, Comm. Math. Phys. 53 (1977), no. 3, 285–294. Google Scholar

  • [29]

    E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. CrossrefGoogle Scholar

  • [30]

    E. H. Lieb and M. Loss, Analysis, 2nd ed., Grad. Stud. Math. 14, American Mathematical Society, Providence, 2001. Google Scholar

  • [31]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 (1985), no. 1, 145–201. Google Scholar

  • [32]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoam. 1 (1985), no. 2, 45–121. Google Scholar

  • [33]

    G. Lu and C. Tao, Reverse Hardy–Littlewood–Sobolev and Stein–Weiss inequalities on the Heisenberg group, preprint (2018).

  • [34]

    G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality, Calc. Var. Partial Differential Equations 42 (2011), no. 3–4, 563–577. Web of ScienceCrossrefGoogle Scholar

  • [35]

    Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy–Littlewood–Sobolev inequality: The case of whole space n, preprint (2016), https://arxiv.org/abs/1508.02041v2.

  • [36]

    Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space 𝐑+n, Int. Math. Res. Not. IMRN 2017 (2017), no. 20, 6187–6230. Google Scholar

  • [37]

    E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. CrossrefGoogle Scholar

  • [38]

    S. L. Sobolev, On a theorem in functional analysis (in Russian), Mat. Sb. 4 (1938), 471–497. Google Scholar

  • [39]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University, Princeton, 1970. Google Scholar

  • [40]

    E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University, Princeton, 1993. Google Scholar

  • [41]

    E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503–514. Google Scholar

About the article


Received: 2018-08-11

Revised: 2018-12-04

Accepted: 2018-12-05

Published Online: 2019-01-22

Published in Print: 2019-08-01


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 11371056

The first and third authors were partly supported by grant from the NNSF of China (No.11371056), the second author was partly supported by a US NSF grant and a grant from the Simons foundation.


Citation Information: Advanced Nonlinear Studies, Volume 19, Issue 3, Pages 475–494, ISSN (Online) 2169-0375, ISSN (Print) 1536-1365, DOI: https://doi.org/10.1515/ans-2018-2038.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in