[1]

H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev. 18 (1976), no. 4, 620–709.
CrossrefGoogle Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications,
J. Functional Analysis 14 (1973), 349–381.
CrossrefGoogle Scholar

[3]

H. Brezis,
Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext,
Springer, New York, 2011.
Google Scholar

[4]

H. Brézis and R. E. L. Turner,
On a class of superlinear elliptic problems,
Comm. Partial Differential Equations 2 (1977), no. 6, 601–614.
CrossrefGoogle Scholar

[5]

X. Cabré and Y. Martel,
Weak eigenfunctions for the linearization of extremal elliptic problems,
J. Funct. Anal. 156 (1998), no. 1, 30–56.
CrossrefGoogle Scholar

[6]

D. G. de Figueiredo, P.-L. Lions and R. D. Nussbaum,
A priori estimates and existence of positive solutions of semilinear elliptic equations,
J. Math. Pures Appl. (9) 61 (1982), no. 1, 41–63.
Google Scholar

[7]

M. Delgado, J. López-Gómez and A. Suárez,
Combining linear and nonlinear diffusion,
Adv. Nonlinear Stud. 4 (2004), no. 3, 273–287.
Google Scholar

[8]

X. Fan and D. Zhao,
On the spaces ${L}^{p(x)}(\mathrm{\Omega})$ and ${W}^{m,p(x)}(\mathrm{\Omega})$,
J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.
Web of ScienceGoogle Scholar

[9]

P. C. Fife,
Mathematical Aspects of Reacting and Diffusing Systems,
Lecture Notes in Biomath. 28,
Springer, Berlin, 1979.
Google Scholar

[10]

J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
Existence, asymptotic behavior and uniqueness for large solutions to $\mathrm{\Delta}u={e}^{q(x)u*}$,
Adv. Nonlinear Stud. 9 (2009), no. 2, 395–424.
Google Scholar

[11]

J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
Large solutions for the Laplacian with a power nonlinearity given by a variable exponent,
Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 889–902.
CrossrefGoogle Scholar

[12]

J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
An application of the maximum principle to describe the layer behavior of large solutions and related problems,
Manuscripta Math. 134 (2011), no. 1–2, 183–214.
Web of ScienceCrossrefGoogle Scholar

[13]

J. García-Melián, J. D. Rossi and J. C. Sabina de Lis,
A variable exponent diffusion problem of concave-convex nature,
Topol. Methods Nonlinear Anal. 47 (2016), no. 2, 613–639.
Web of ScienceGoogle Scholar

[14]

B. Gidas and J. Spruck,
A priori bounds for positive solutions of nonlinear elliptic equations,
Comm. Partial Differential Equations 6 (1981), no. 8, 883–901.
CrossrefGoogle Scholar

[15]

D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, 2nd ed.,
Grundlehren Math. Wiss. 224,
Springer, Berlin, 1983.
Google Scholar

[16]

L. Jeanjean,
On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${\mathbf{R}}^{N}$,
Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809.
Google Scholar

[17]

P.-L. Lions,
On the existence of positive solutions of semilinear elliptic equations,
SIAM Rev. 24 (1982), no. 4, 441–467.
CrossrefGoogle Scholar

[18]

J. López-Gómez,
Varying stoichiometric exponents. I. Classical steady-states and metasolutions,
Adv. Nonlinear Stud. 3 (2003), no. 3, 327–354.
Google Scholar

[19]

J. López-Gómez and A. Suárez,
Combining fast, linear and slow diffusion,
Topol. Methods Nonlinear Anal. 23 (2004), no. 2, 275–300.
CrossrefGoogle Scholar

[20]

J. Musielak,
Orlicz Spaces and Modular Spaces,
Lecture Notes in Math. 1034,
Springer, Berlin, 1983.
Google Scholar

[21]

W. M. Ni,
The Mathematics of Diffusion,
CBMS-NSF Regional Conf. Ser. in Appl. Math. 82,
SIAM, Philadelphia, 2011.
Google Scholar

[22]

C. V. Pao,
Nonlinear Parabolic and Elliptic Equations,
Plenum Press, New York, 1992.
Google Scholar

[23]

P. Quittner and P. Souplet,
Superlinear Parabolic Problems,
Birkhäuser Adv. Texts Basler Lehrbücher,
Birkhäuser, Basel, 2007.
Google Scholar

[24]

P. H. Rabinowitz,
Minimax Methods in Critical Point Theory with Applications to Differential Equations,
CBMS Reg. Conf. Ser. Math. 65,
American Mathematical Society, Providence, 1986.
Google Scholar

[25]

V. D. Rădulescu,
Nonlinear elliptic equations with variable exponent: Old and new,
Nonlinear Anal. 121 (2015), 336–369.
Web of ScienceCrossrefGoogle Scholar

[26]

J. Smoller,
Shock Waves and Reaction-Diffusion Equations, 2nd ed.,
Grundlehren Math. Wiss. 258,
Springer, New York, 1994.
Google Scholar

[27]

M. Struwe,
Variational Methods, 4th ed.,
Ergeb. Math. Grenzgeb. (3) 34,
Springer, Berlin, 2008.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.