Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Nonlinear Studies

Editor-in-Chief: Ahmad, Shair


IMPACT FACTOR 2017: 1.029
5-year IMPACT FACTOR: 1.147

CiteScore 2017: 1.29

SCImago Journal Rank (SJR) 2017: 1.588
Source Normalized Impact per Paper (SNIP) 2017: 0.971

Mathematical Citation Quotient (MCQ) 2017: 1.03

Online
ISSN
2169-0375
See all formats and pricing
More options …
Ahead of print

Issues

The E-Cohomological Conley Index, Cup-Lengths and the Arnold Conjecture on T 2n

Maciej Starostka
  • Corresponding author
  • Ruhr-Universität Bochum, Bochum, Germany; and Gdańsk University of Technology, Gdańsk, Polen
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nils Waterstraat
  • Institut für Mathematik, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-16 | DOI: https://doi.org/10.1515/ans-2019-2044

Abstract

We show that the E-cohomological Conley index, that was introduced by the first author recently, has a natural module structure. This yields a new cup-length and a lower bound for the number of critical points of functionals on Hilbert spaces. When applied to the setting of the Arnold conjecture, this paves the way to a short proof on tori, where it was first shown by C. Conley and E. Zehnder in 1983.

Keywords: Critical Points; Arnold Conjecture

MSC 2010: 37J10; 53D40; 58E05

References

  • [1]

    A. Abbondandolo, A new cohomology for the Morse theory of strongly indefinite functionals on Hilbert spaces, Topol. Methods Nonlinear Anal. 9 (1997), no. 2, 325–382. CrossrefGoogle Scholar

  • [2]

    M. Chaperon, An elementary proof of the Conley–Zehnder theorem in symplectic geometry, Dynamical Systems and Bifurcations (Groningen 1984), Lecture Notes in Math. 1125, Springer, Berlin (1985), 1–8. Google Scholar

  • [3]

    C. C. Conley and E. Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnol’d, Invent. Math. 73 (1983), no. 1, 33–49. CrossrefGoogle Scholar

  • [4]

    T. tom Dieck, Algebraic Topology, EMS Textbk. Math., European Mathematical Society (EMS), Zürich, 2008. Google Scholar

  • [5]

    Z. A. Dzedzej, K. Gȩba and W. Uss, The Conley index, cup-length and bifurcation, J. Fixed Point Theory Appl. 10 (2011), no. 2, 233–252. CrossrefWeb of ScienceGoogle Scholar

  • [6]

    B. Fortune, A symplectic fixed point theorem for 𝐂Pn, Invent. Math. 81 (1985), no. 1, 29–46. Google Scholar

  • [7]

    K. Gȩba and A. Granas, Infinite-dimensional cohomology theories, J. Math. Pures Appl. (9) 52 (1973), 145–270. Google Scholar

  • [8]

    K. Gȩba, M. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math. 134 (1999), no. 3, 217–233. Google Scholar

  • [9]

    H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 407–462. CrossrefGoogle Scholar

  • [10]

    H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser, Basel, 1994. Google Scholar

  • [11]

    M. Izydorek, T. O. Rot, M. Starostka, M. Styborski and R. C. A. M. Vandervorst, Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces, J. Differential Equations 263 (2017), no. 11, 7162–7186. CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Y.-G. Oh, A symplectic fixed point theorem on T2n×𝐂Pk, Math. Z. 203 (1990), no. 4, 535–552. Google Scholar

  • [13]

    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986. Google Scholar

  • [14]

    E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. Google Scholar

  • [15]

    M. Starostka, Morse cohomology in a Hilbert space via the Conley index, J. Fixed Point Theory Appl. 17 (2015), no. 2, 425–438. CrossrefWeb of ScienceGoogle Scholar

  • [16]

    M. Styborski, Conley index in Hilbert spaces and the Leray–Schauder degree, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 131–148. CrossrefGoogle Scholar

About the article


Received: 2018-03-12

Revised: 2019-01-18

Accepted: 2019-03-13

Published Online: 2019-04-16


Maciej Starostka was supported by the grants Preludium9 of the National Science Centre, no. 2015/17/N/ST1/02527 as well as BEETHOVEN2 of the National Science Centre, Poland, no. 2016/23/G/ST1/ 04081. Nils Waterstraat was supported by the grant BEETHOVEN2 of the National Science Centre, Poland, no. 2016/23/G/ST1/04081.


Citation Information: Advanced Nonlinear Studies, ISSN (Online) 2169-0375, ISSN (Print) 1536-1365, DOI: https://doi.org/10.1515/ans-2019-2044.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in