[1]

S. Alama and G. Tarantello,
On semilinear elliptic equations with indefinite nonlinearities,
Calc. Var. Partial Differential Equations 1 (1993), no. 4, 439–475.
CrossrefGoogle Scholar

[2]

S. Alama and G. Tarantello,
Elliptic problems with nonlinearities indefinite in sign,
J. Funct. Anal. 141 (1996), no. 1, 159–215.
CrossrefGoogle Scholar

[3]

H. Amann and J. López-Gómez,
A priori bounds and multiple solutions for superlinear indefinite elliptic problems,
J. Differential Equations 146 (1998), no. 2, 336–374.
CrossrefGoogle Scholar

[4]

L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Math. Monogr.,
The Clarendon Press, New York, 2000.
Google Scholar

[5]

G. Anzellotti,
Pairings between measures and bounded functions and compensated compactness,
Ann. Mat. Pura Appl. (4) 135 (1983), 293–318.
CrossrefGoogle Scholar

[6]

G. Anzellotti,
The Euler equation for functionals with linear growth,
Trans. Amer. Math. Soc. 290 (1985), no. 2, 483–501.
CrossrefGoogle Scholar

[7]

G. Anzellotti,
BV solutions of quasilinear PDEs in divergence form,
Comm. Partial Differential Equations 12 (1987), no. 1, 77–122.
CrossrefGoogle Scholar

[8]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg,
Superlinear indefinite elliptic problems and nonlinear Liouville theorems,
Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 59–78.
CrossrefGoogle Scholar

[9]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg,
Variational methods for indefinite superlinear homogeneous elliptic problems,
NoDEA Nonlinear Differential Equations Appl. 2 (1995), no. 4, 553–572.
CrossrefGoogle Scholar

[10]

E. Bombieri, E. De Giorgi and M. Miranda,
Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche,
Arch. Ration. Mech. Anal. 32 (1969), 255–267.
CrossrefGoogle Scholar

[11]

D. Bonheure, P. Habets, F. Obersnel and P. Omari,
Classical and non-classical positive solutions of a prescribed curvature equation with singularities,
Rend. Istit. Mat. Univ. Trieste 39 (2007), 63–85.
Google Scholar

[12]

D. Bonheure, P. Habets, F. Obersnel and P. Omari,
Classical and non-classical solutions of a prescribed curvature equation,
J. Differential Equations 243 (2007), no. 2, 208–237.
CrossrefGoogle Scholar

[13]

H. Brezis,
Functional analysis, Sobolev Spaces and Partial Differential Equations,
Universitext,
Springer, New York, 2011.
Google Scholar

[14]

K. J. Brown and S. S. Lin,
On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function,
J. Math. Anal. Appl. 75 (1980), no. 1, 112–120.
CrossrefGoogle Scholar

[15]

M. Burns and M. Grinfeld,
On a bistable quasilinear parabolic equation: Well-posedness and stationary solutions,
Commun. Appl. Anal. 15 (2011), no. 2–4, 251–264.
Google Scholar

[16]

M. Burns and M. Grinfeld,
Steady state solutions of a bi-stable quasi-linear equation with saturating flux,
European J. Appl. Math. 22 (2011), no. 4, 317–331.
CrossrefGoogle Scholar

[17]

G. Buttazzo, M. Giaquinta and S. Hildebrandt,
One-dimensional Variational Problems. An Introduction,
Oxford Lecture Ser. Math. Appl. 15,
The Clarendon Press, New York, 1998.
Google Scholar

[18]

S. Cano-Casanova, J. López-Gómez and K. Takimoto,
A quasilinear parabolic perturbation of the linear heat equation,
J. Differential Equations 252 (2012), no. 1, 323–343.
CrossrefGoogle Scholar

[19]

S. Cano-Casanova, J. López-Gómez and K. Takimoto,
A weighted quasilinear equation related to the mean curvature operator,
Nonlinear Anal. 75 (2012), no. 15, 5905–5923.
CrossrefGoogle Scholar

[20]

P. Concus and R. Finn,
On a class of capillary surfaces,
J. Anal. Math. 23 (1970), 65–70.
CrossrefGoogle Scholar

[21]

C. Corsato, C. De Coster, N. Flora and P. Omari,
Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry,
Nonlinear Anal. 181 (2019), 9–23.
CrossrefGoogle Scholar

[22]

C. Corsato, C. De Coster and P. Omari,
The Dirichlet problem for a prescribed anisotropic mean curvature equation: Existence, uniqueness and regularity of solutions,
J. Differential Equations 260 (2016), no. 5, 4572–4618.
CrossrefGoogle Scholar

[23]

C. Corsato, P. Omari and F. Zanolin,
Subharmonic solutions of the prescribed curvature equation,
Commun. Contemp. Math. 18 (2016), no. 3, Article ID 1550042.
Google Scholar

[24]

L. Dascal, S. Kamin and N. A. Sochen,
A variational inequality for discontinuous solutions of degenerate parabolic equations,
RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 99 (2005), no. 2, 243–256.
Google Scholar

[25]

M. Emmer,
Esistenza, unicità e regolarità nelle superfici de equilibrio nei capillari,
Ann. Univ. Ferrara Sez. VII (N. S.) 18 (1973), 79–94.
Google Scholar

[26]

D. G. de Figueiredo,
Lectures on the Ekeland Variational Principle with Applications and Detours,
Tata Inst. Fundam. Res. Lect. Math. Phys. 81,
Springer, Berlin, 1989.
Google Scholar

[27]

R. Finn,
The sessile liquid drop. I. Symmetric case,
Pacific J. Math. 88 (1980), no. 2, 541–587.
CrossrefGoogle Scholar

[28]

R. Finn,
Equilibrium Capillary Surfaces,
Grundlehren Math. Wiss. 284,
Springer, New York, 1986.
Google Scholar

[29]

C. Gerhardt,
Boundary value problems for surfaces of prescribed mean curvature,
J. Math. Pures Appl. (9) 58 (1979), no. 1, 75–109.
Google Scholar

[30]

C. Gerhardt,
Global ${C}^{1,1}$-regularity for solutions of quasilinear variational inequalities,
Arch. Ration. Mech. Anal. 89 (1985), no. 1, 83–92.
Google Scholar

[31]

E. Giusti,
Boundary value problems for non-parametric surfaces of prescribed mean curvature,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 3 (1976), no. 3, 501–548.
Google Scholar

[32]

E. Giusti,
Minimal Surfaces and Functions of Bounded Variation,
Monogr. Math. 80,
Birkhäuser, Basel, 1984.
Google Scholar

[33]

R. Gómez-Reñasco and J. López-Gómez,
The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations,
J. Differential Equations 167 (2000), no. 1, 36–72.
CrossrefGoogle Scholar

[34]

E. Gonzalez, U. Massari and I. Tamanini,
Existence and regularity for the problem of a pendent liquid drop,
Pacific J. Math. 88 (1980), no. 2, 399–420.
CrossrefGoogle Scholar

[35]

G. Huisken,
Capillary surfaces over obstacles,
Pacific J. Math. 117 (1985), no. 1, 121–141.
CrossrefGoogle Scholar

[36]

A. Kurganov and P. Rosenau,
On reaction processes with saturating diffusion,
Nonlinearity 19 (2006), no. 1, 171–193.
CrossrefGoogle Scholar

[37]

O. A. Ladyzhenskaya and N. N. Ural’tseva,
Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations,
Comm. Pure Appl. Math. 23 (1970), 677–703.
CrossrefGoogle Scholar

[38]

V. K. Le,
Some existence results on nontrivial solutions of the prescribed mean curvature equation,
Adv. Nonlinear Stud. 5 (2005), no. 2, 133–161.
Google Scholar

[39]

V. K. Le and K. Schmitt,
Global Bifurcation in Variational Inequalities. Applications to Obstacle and Unilateral Problems,
Appl. Math. Sci. 123,
Springer, New York, 1997.
Google Scholar

[40]

J. López-Gómez,
Spectral Theory and Nonlinear Functional Analysis,
Chapman & Hall/CRC Res. Notes Math. 426,
Chapman & Hall/CRC, Boca Raton, 2001.
Google Scholar

[41]

J. López-Gómez,
Global existence versus blow-up in superlinear indefinite parabolic problems,
Sci. Math. Jpn. 61 (2005), no. 3, 493–516.
Google Scholar

[42]

J. López-Gómez and P. Omari,
Positive solutions of a sublinear indefinite quasilinear Neumann problem,
in preparation.

[43]

J. López-Gómez, P. Omari and S. Rivetti,
Bifurcation of positive solutions for a one-dimensional indefinite quasilinear Neumann problem,
Nonlinear Anal. 155 (2017), 1–51.
CrossrefGoogle Scholar

[44]

J. López-Gómez, P. Omari and S. Rivetti,
Positive solutions of a one-dimensional indefinite capillarity-type problem: A variational approach,
J. Differential Equations 262 (2017), no. 3, 2335–2392.
CrossrefGoogle Scholar

[45]

J. López-Gómez, A. Tellini and F. Zanolin,
High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems,
Commun. Pure Appl. Anal. 13 (2014), no. 1, 1–73.
Google Scholar

[46]

M. Marzocchi,
Multiple solutions of quasilinear equations involving an area-type term,
J. Math. Anal. Appl. 196 (1995), no. 3, 1093–1104.
CrossrefGoogle Scholar

[47]

M. Nakao,
A bifurcation problem for a quasi-linear elliptic boundary value problem,
Nonlinear Anal. 14 (1990), no. 3, 251–262.
CrossrefGoogle Scholar

[48]

F. Obersnel and P. Omari,
Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions,
Differential Integral Equations 22 (2009), no. 9–10, 853–880.
Google Scholar

[49]

F. Obersnel and P. Omari,
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation,
J. Differential Equations 249 (2010), no. 7, 1674–1725.
CrossrefGoogle Scholar

[50]

F. Obersnel and P. Omari,
Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation,
Discrete Contin. Dyn. Syst. 33 (2013), no. 1, 305–320.
Google Scholar

[51]

F. Obersnel, P. Omari and S. Rivetti,
Asymmetric Poincaré inequalities and solvability of capillarity problems,
J. Funct. Anal. 267 (2014), no. 3, 842–900.
CrossrefGoogle Scholar

[52]

P. Rosenau,
Free energy functionals at the high gradient limit,
Phys. Rev. A 41 (1990), 2227–2230.
CrossrefGoogle Scholar

[53]

J. Serrin,
The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,
Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496.
CrossrefGoogle Scholar

[54]

R. Temam,
Solutions généralisées de certaines équations du type hypersurfaces minima,
Arch. Ration. Mech. Anal. 44 (1971/72), 121–156.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.