Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Acoustics

The Journal of Institute of Fundamental Technological of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.816
5-year IMPACT FACTOR: 0.835

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.432
Source Normalized Impact per Paper (SNIP) 2016: 0.948

Open Access
See all formats and pricing
More options …
Volume 37, Issue 1


Providing Surround Sound with Loudspeakers: A Synopsis of Current Methods

Jens Blauert / Rudolf Rabenstein
  • Chair of Multimedia Communication & Signal Processing, Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-03 | DOI: https://doi.org/10.2478/v10168-012-0002-y


Available methods for room-related sound presentation are introduced and evaluated. A focus is put on the synthesis side rather than on complete transmission systems. Different methods are compared using common, though quite general criteria. The methods selected for comparison are: Intensity Stereophony after Blumlein, vector-base amplitude panning (VBAP), 5.1-Surround and its discrete-channel derivatives, synthesis with spherical harmonics (Ambisonics, HOA), synthesis based on the boundary method, namely, wave-field synthesis (WFS), and binaural-cue selection methods (e.g., DiRAC). While VBAP, 5.1-Surround and other discrete-channel-based methods show a number of practical advantages, they do, in the end, not aim at authentic sound-field reproduction. The so-called holophonic methods that do so, particularly, HOA and WFS, have specific advantages and disadvantages which will be discussed. Yet, both methods are under continuous development, and a decision in favor of one of them should be taken from a strictly application-oriented point of view by considering relevant application-specific advantages and disadvantages in detail.

Keywords: surround sound; holography; wavefield synthesis; ambisonics; amplitude panning; summing localization

  • Ahrens J., Wierstorf H., Spors S. (2010), Comparison of Higher-order Ambisonics and Wave-field Synthesis with respect to spatial-discretization artifacts in the time domain, 40th AES Int. Conf., Audio-Engr. Soc, New York NY.Google Scholar

  • Berkhout A.J. (1988), A holographic approach to acoustic control, J. Audio-Engr. Soc. 36, 977-995.Google Scholar

  • Blauert J., Braasch J. (2008), Räumliches Hören (spatial hearing), [in:] Handbuch der Audiotechnik, S. Weinzierl [Ed.], Springer, Berlin-Heidelberg-New York.Google Scholar

  • Blauert J., Xiang N. (2009), Acoustics for Engineers, 2nd ed., Springer, Berlin-Heidelberg-New York.Google Scholar

  • Blauert J., Braasch J., Buchholz J., Colburn H.S., Jekosch U., Kohlrausch A., Mourjopoulos J., Pulkki V., Raake A. (2009), Auditory assessment by means of binaural algorithms - the AabbA project, Int. Symp. Auditory Audiolog. Res., ISAAR'09, Danavox Jubilee Foundation, DK-Ballerup.Google Scholar

  • Blumlein A.D. (1931), Improvements in and relating to sound transmission, sound recording and sound-reproducing systems, British Patents #325 and #394.Google Scholar

  • Daniel J. (2003), Spatial encoding including near-field effect: introducing distance-coding filters and a viable, new Ambisonics format, 23rd AES Int. Conf., Audio-Engr. Soc, New York NY.Google Scholar

  • Daniel J., Nicol R., Moreau S. (2003), Further investigation of high-order ambisonics and wavefield synthesis for holophonic sound imaging, 114th AES Int. Conv., Audio-Engr. Soc, New York NY.Google Scholar

  • Faller F. (2004), Parametric coding of spatial audio, Doct. diss., EPFL, CH-Lausanne.Google Scholar

  • Gaik W. (1990), Investigation regarding the binaural processing of head-related signals [in German: Untersuchungen zur binauralen Verarbeitung kopfbezogener Signale], Doct. diss., Ruhr-Univ. Bochum, D-Bochum.Google Scholar

  • Geier M., Ahrens J., Spors S. (2008), The Sound-Scape Renderer: A unified spatial audio reproduction framework for arbitrary rendering methods, 124th AES Conv., Audio-Engr. Soc, New York NY.Google Scholar

  • Geier M., Ahrens J., Spors S. (2008), The Sound-Scape Renderer www.tu-berlin.de/?ssr

  • Gerzon M. (1973), Periphony: with-height sound reproduction, J. Audio-Engr. Soc., 21, 2-10.Google Scholar

  • Hamasaki K., Hiyama, R. Okumura (2005), The 22.2 multi-channel sound system and its application, 118th AES Conv., Audio-Engr. Soc., New York NY.Google Scholar

  • Hollerweger F. (2005), An introduction to Higher-order Ambisonics www.create.ucsb.edu/wp/-FH_HOA.pdf

  • Kamekawa T., Marui A., Irimajiri H. (2007), Correspondence relationship between physical factors and psychological impressions of microphone arrays for orchestra recording, 123rd AES Conv., Audio-Engr. Soc, New York NY.Google Scholar

  • Kang S.-K., Kim S.-H. (1996), Realistic audio teleconferencing using binaural and auralization techniques, ETRI J., 18, 41-51.Google Scholar

  • Lindemann W. (1985), Extension of the cross-correlation model of binaural signal processing by mechanisms of contra-lateral inhibition [in German: Die Erweiterung des Kreuzkorrelationsmodells der binauralen Signalverarbeitung durch kontralaterale Inhibitionsmechanismen], Doct. diss., Ruhr-Univ. Bochum, D-Bochum.Google Scholar

  • Lopez J.J., Cobos M., Pueo B. (2010), Elevation in wave-field synthesis using HRTF cues, Acta Acustica united with Acustica, 96, 340-350.Web of ScienceGoogle Scholar

  • Menzel D., Wittek H., Theile G., Fastl H. (2005), The Binaural Sky: A Virtual Headphone for binaural room synthesis, Tonmeistersymposium. D-Hohenkammer.Google Scholar

  • Merimaa J. (2006), Analysis, synthesis and perception of spatial sound - binaural localization modeling and multi-channel loudspeaker reproduction, Doct. diss., Aalto Univ., FI-Helsinki.Google Scholar

  • Merimaa J., Pulkki V. (2005), Spatial impulse response rendering I: Analysis and synthesis. J. Audio-Engr. Soc. 53, 1115-1127.Google Scholar

  • Meyer E., Thiele R. (1956), Room-acoustical investigations in numerous concert halls and radio studios by means of novel measuring techniques [in German: Raumakustische Untersuchungen in zahlreichen Konzertsälen und Rundfunkstudios unter Anwendung neuerer Messverfahren], Acustica, 6, 425-444.Google Scholar

  • Meyer J., Elko G. (2010), Analysis of the high-frequency extension for spherical eigenbeamforming microphone arrays, J. Acoust. Soc. Am., 127, 1979.Google Scholar

  • Moreau S., Daniel J., Bertet S. (2006), 3-D sound field recording with Higher-Order Ambisonics - objective measurements and validation of spherical microphones, 120th AES Conv., Audio-Engr. Soc, New York NY.Google Scholar

  • Nicol R. (2010), Représentation et perception des espaces auditifs virtuels (representation and perception of virtual auditory spaces), Habilitation thesis, Univ. du Maine, F-Le Mans.Google Scholar

  • Plenge G., Theile G. (1977), Localization of lateral auditory events, J. Audio-Engr. Soc., 25, 196-200.Google Scholar

  • Pulkki V. (2006), Directional audio coding in spatial sound reproduction and stereo upmixing, 28th AES Int. Conf., Audio-Engr. Soc., New York NY.Google Scholar

  • Pulkki V. (2001), Spatial sound generation and perception by amplitude-panning techniques, Doct. diss., Aalto Univ., FI-Helsinki.Google Scholar

  • Rabenstein R., Blauert J. (2010), Sound-field synthesis with loudspeakers, part II - signal processing, [in German: Schallfeldsynthese mit Lautsprechern II - Signalverarbeitung], ITG-Fachtg. Sprachkommunikation, D-Bochum.Google Scholar

  • Rabenstein R., Spors S. (2008), Sound-field reproduction, [in:] Benesty J., Sondhi M.M., Huang Y. [Eds.], Springer Handbook of Speech Processing, 1095-1114, Springer, Berlin-Heidelberg-New York.Google Scholar

  • Rumsey F. (2001), Spatial Audio, Focal Press, GB-Oxford.Google Scholar

  • Spors S., Rabenstein R., Ahrens J. (2008), The theory of Wave-field Synthesis revisited, 124th AES Conv., Audio-Engr. Soc., New York NY.Google Scholar

  • Steinberg J.C., Snow W.B. (1934), Auditory perspective - physical factors, Electr. Engr., 12-17.Google Scholar

  • Theile G. (2001), Multi-channel natural music recording based on psychoacoustic principles, 19th AES Int. Conf., Audio-Engr. Soc., New York NY.Google Scholar

  • Theile G. (2005), Spatial-audio presentation by means of wave-field synthesis [in German: Räumliche Tondarstellung mit Wellenfeldsynthese], VDT-Magazin 2.Google Scholar

  • Van Daele B., Van Baelen W. (2011), Auro-3D: the advantage of channel-based sound in 3D, Proc. Int. Conf. Spatial Audio, ICSA, D-Detmold.Google Scholar

  • Wendt K. (1963), Directional hearing in two superposed sound fields as in intensity- and arrival-time stereophony [in German: Das Richtungshören bei der Überlagerung zweier Schallfelder bei Intensitäts- und Laufzeitstereophonie], Doct. diss., RWTH Aachen, D-Aachen.Google Scholar

  • Woszczyk W. (2011), Active acoustics in concert halls - a new approach, Archives of Acoustics, 36, 2, 379-393.Google Scholar

About the article

Published Online: 2012-05-03

Published in Print: 2012-03-01

Citation Information: Archives of Acoustics, Volume 37, Issue 1, Pages 5–18, ISSN (Print) 0137-5075, DOI: https://doi.org/10.2478/v10168-012-0002-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.


Comments (0)

Please log in or register to comment.
Log in