Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Acoustics

The Journal of Institute of Fundamental Technological of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.816
5-year IMPACT FACTOR: 0.835

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.432
Source Normalized Impact per Paper (SNIP) 2016: 0.948

Open Access
See all formats and pricing
More options …
Volume 41, Issue 3


Subjective Evaluation of Three Headphone-Based Virtual Sound Source Positioning Methods Including Differential Head-Related Transfer Function

Dominik Storek
  • Corresponding author
  • Department of Radioelectronics, Czech Technical University in Prague Technická 2, 166 27 Prague, Czechia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frantisek Rund
  • Department of Radioelectronics, Czech Technical University in Prague Technická 2, 166 27 Prague, Czechia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Marsalek
  • Department of Radioelectronics, Czech Technical University in Prague Technická 2, 166 27 Prague, Czechia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-27 | DOI: https://doi.org/10.1515/aoa-2016-0043


This paper analyses the performance of Differential Head-Related Transfer Function (DHRTF), an alternative transfer function for headphone-based virtual sound source positioning within a horizontal plane. This experimental one-channel function is used to reduce processing and avoid timbre affection while preserving signal features important for sound localisation. The use of positioning algorithm employing the DHRTF is compared to two other common positioning methods: amplitude panning and HRTF processing. Results of theoretical comparison and quality assessment of the methods by subjective listening tests are presented. The tests focus on distinctive aspects of the positioning methods: spatial impression, timbre affection, and loudness fluctuations. The results show that the DHRTF positioning method is applicable with very promising performance; it avoids perceptible channel coloration that occurs within the HRTF method, and it delivers spatial impression more successfully than the simple amplitude panning method.

Keywords: virtual positioning; virtual reality; positioning method; positioning algorithm; head-related transfer function; amplitude panning


  • 1. Adams N.H., Wakefield G.H. (2008), State-space synthesis of virtual auditory space, IEEE T. Audio Speech, 16, 5, 881-890.Web of ScienceCrossrefGoogle Scholar

  • 2. Algazi V.R., Duda R.O. (2011), Headphone-based spatial sound, IEEE Signal Proc. Mag., 28, 1, 33-42.CrossrefWeb of ScienceGoogle Scholar

  • 3. Algazi V.R., Duda R.O., Thompson D.M., Avendan C. (2001), The CIPIC HRTF database, [in:] IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 99-102.Google Scholar

  • 4. Avendano O., Duda R.O., Algazi V.R. (1999), Modeling the contralateral HRTF, [in:] Audio Engineering Society Conference: 16th International Conference: Spatial Sound Reproduction, Audio Engineering Society.Google Scholar

  • 5. Baumgartner R., Majdak P., Labackb. (2014), Modeling sound-source localization in sagittal planes for human listeners, The Journal of the Acoustical Society of America, 136, 2, 791-802.Google Scholar

  • 6. Blanco-Martin E., Casajús-Quirós F. J., Gomez-Alfageme J. J., Ortiz-Berenguer L.I. (2011), Objective measurement of sound event localization in horizontal and median planes, J. Audio Eng. Soc., 59, 3, 124-136.Google Scholar

  • 7. Blauert J. (1997), Spatial hearing: the psychophysics of human sound localization, MIT press.Google Scholar

  • 8. Blauert J. (2013), The technology of binaural listening, Springer Verlag, Berlin, e Book.Google Scholar

  • 9. Duda R.O. (1996), Auditory localization demonstrations, Acta Acust. United Ac., 82, 2, 346-355.Google Scholar

  • 10. Fels J., Vorländer M. (2009), Anthropometric parameters influencing head-related transfer functions, Acta Acust. United Ac., 95, 2, 331-342.Web of ScienceCrossrefGoogle Scholar

  • 11. Gardner W.G. (1998), 3-Daudio using loudspeakers, Springer Science & Business Media.Google Scholar

  • 12. Hartmann W.M., Rakerdb. (1989), On the minimum audible angle - a decision theory approach, J. Acoust. Soc. Am., 85, 5, 2031-2041.Google Scholar

  • 13. Huang Y., Benestyj. (2004), Audio Signal Processing for Next-Generation Multimedia Communication Systems, Springer, Boston, MA, USA.Google Scholar

  • 14. Kostal L., Marsalek P. (2010), Neuronal jitter: can we measure the spike timing dispersion differently, Chin. J. Physiol., 53, 454-464.Web of ScienceGoogle Scholar

  • 15. Langendijk E.H., Bronkhorst A.W. (2002), Contribution of spectral cues to human sound localization, The Journal of the Acoustical Society of America, 112, 4, 1583-1596.Google Scholar

  • 16. Lorho G., Huopaniemi J., Zacharov N., Isherwood D. (2000), Efficient HRTF synthesis using an interaural transfer function model, [in:] Signal Processing Conference, 2000 10th European, pp. 1-4, IEEE.Google Scholar

  • 17. Majdak P., Goupell M.J., Labackb. (2010), 3-D localization of virtual sound sources: effects of visual environment, pointing method, and training, Atten. Percept. Psycho., 72, 2, 454-469.Web of ScienceGoogle Scholar

  • 18. Malinina E.S., Andreeva I.G. (2010), The role of spectral components of the head-related transfer functions in evaluation of the virtual sound source motion in the vertical plane, Acoust. Phys., 56, 4, 576-583.Web of ScienceGoogle Scholar

  • 19. Marsalek P. (2001), Neural code for sound localization at low frequencies, Neurocomputing, 38, 14431452.Google Scholar

  • 20. Marsalek P., Kofranek J. (2004), Sound localization at high frequencies and across the frequency range, Neurocomputing, 58, 999-1006.Google Scholar

  • 21. Oreinos E., Buchholz J.M. (2013), Measurement of a full 3D set of HRTFs for in-ear and hearing aid microphones on a head and torso simulator (HATS) , Acta Acust. United Ac., 99, 5, 836-844.Web of ScienceGoogle Scholar

  • 22. Ortega-Gonzalez Y., Garbaya S., Merienne F. (2010), Reducing reversal errors in localizing the source of sound in virtual environment without head tracking, [in;] Haptic and Audio Interaction Design, pp. 85-96.Google Scholar

  • 23. Otcenasek Z. (2008), On Subjective Evaluationof Sound[in Czech], Akademie muzickych umeni, Prague, Czech Republic.Google Scholar

  • 24. Pec M., Bujacz M., Strumiłło P. (2007), Personalized head related transfer function measurement and verification through sound localization resolution, [in:] Proceedings of the 15th European Signal Processing Conference, pp. 2326-2330.Google Scholar

  • 25. Pulkki Y. (2001), Localization of amplitude-panned virtual sources II: Two-and three-dimensional panning, J. Audio Eng. Soc., 49, 9, 753-767.Google Scholar

  • 26. Rumsey F. (2011), Whose head is it anyway? Optimizing binaural audio, J. Audio Eng. Soc., 59, 9, 672-675.Google Scholar

  • 27. Sanda P., Marsalek P. (2012), Stochastic interpolation model of the medial superior olive neural circuit, Brain Res., 1434, 257-265.Web of ScienceGoogle Scholar

  • 28. Seki Y., Sato T. (2011), A training system of orientation and mobility for blind people using acoustic virtual reality, IEEE T. Neur. Sys. Reh., 19, 1, 95-104.CrossrefWeb of ScienceGoogle Scholar

  • 29. Shinn-Cunningham B.G., Santarelli S., Kopco N. (2000), Tori of confusion: Binaural localization cues for sources with in reach of a listener, J. Acoust. Soc. Am., 107, 3, 1627-1636.Google Scholar

  • 30. Sodnik J., Susnik R., Tomazic S. (2004), Acoustic signal localization through the use of head related transfer functions, Systemics, Cybernetics and Informatics, 2, 6, 56-59.Google Scholar

  • 31. Sodnik J., Susnik R., Tomazic S. (2006), Principal components of non-individualized head related transfer functions significant for azimuth perception, Acta Acust. United Ac., 92, 2, 312-319.Web of ScienceGoogle Scholar

  • 32. Storek D. (2013), Virtual sound source positioning by differential head related transfer function, [in:] Audio Engineering Society Conference: 49th International Conference: Audio for Games, Audio Engineering Society.Google Scholar

  • 33. Storek D., Bouse J., Rund F., Marsalek P. (2016), Artifact reduction in positioning algorithm using differential HRTF, Journal of Audio Engineering Society, 64, 208-217.Google Scholar

  • 34. Suzuki S., Murase M., Wakunami K., Takashi T. (2008), The effect of head motion and HRTF on human auditory localization by headphone presented sound, [in:] The 3rd International Symposium on Biomedical Engineering, pp. 1-4.Google Scholar

  • 35. Wersenyi G. (2009), Effect of emulated head-tracking for reducing localization errors in virtual audio simulation, IEEE T. Audio Speech, 17, 2, 247-252.CrossrefWeb of ScienceGoogle Scholar

  • 36. Xie B., Zhang T. (2010), The audibility of spectral detail of head-related transfer functions at high frequency, Acta Acust. United Ac., 96, 2, 328-339.Web of ScienceCrossrefGoogle Scholar

  • 37. Yao S.-N., Chen L.J. (2013), HRTF adjustments with audio quality assessments, Archives of Acoustics, 38, 1, 55-62.Web of ScienceCrossrefGoogle Scholar

  • 38. Zhang P.X., Hartmann W.M. (2010), On the ability of human listeners to distinguish between front and back, Hearing Research, 260, 1, 30-46.Web of ScienceGoogle Scholar

  • 39. Zölzer U. (2011), DAFX: digital audio effects, Wiley Online Library, Hoboken, NJ, USA. Google Scholar

About the article

Received: 2015-12-01

Accepted: 2016-03-02

Published Online: 2016-10-27

Published in Print: 2016-09-01

Citation Information: Archives of Acoustics, Volume 41, Issue 3, Pages 437–447, ISSN (Online) 2300-262X, DOI: https://doi.org/10.1515/aoa-2016-0043.

Export Citation

© Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in