Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

Glutamine as a Feed Supplement for Piglets: a Review / Glutamina jako dodatek do paszy dla prosiąt: przegląd

Ewa Hanczakowska
  • Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Niwińska
  • Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10220-012-0054-y

Abstract

Weaning is a crucial moment in a piglet’s life. It is characterized by a generally low nutrient intake and adverse changes in the small intestinal mucosa. Proper feeding is therefore necessary to ensure normal development of the gastrointestinal tract. One substance that could provide intestinal epithelial cells with necessary energy is the amino acid glutamine. It improves epithelium structure and accelerates the growth of intestinal villi in which nutrients are absorbed, thus improving feed utilization and growth performance in piglets. The effect of glutamine on intestinal microflora also improves animal health. In addition to liver and kidneys, small intestine is the main site of glutamine metabolism, which leads to the synthesis of purine and pyrimidine nucleotides and of the important antioxidant glutathione. Glutamine is also a precursor for the synthesis of proline and arginine, the components of body proteins. Glutamine downregulates the expression of genes responsible for oxidative stress and immune activation, and increases the expression of genes that are necessary for cell growth and removal of oxidants. Due to these properties, glutamine is considered an essential amino acid in diets for weaned piglets.

STRESZCZENIE Odsadzenie jest decydującym momentem w życiu prosiąt. Zmniejsza się wówczas spożycie paszy i zachodzą niekorzystne zmiany w nabłonku jelita cienkiego. W tym okresie niezbędne jest odpowiednie żywienie zapewniające prawidłowy rozwój przewodu pokarmowego. Jedną z substancji mogących dostarczyć komórkom nabłonka jelitowego niezbędnej energii jest aminokwas glutamina. Poprawia ona strukturę nabłonka stymulując wzrost kosmków będących miejscem absorpcji składników odżywczych, co poprawia wykorzystanie paszy i wskaźniki produkcyjne. Glutamina poprawia również zdrowotność prosiąt poprzez korzystne zmiany w mikroflorze jelitowej. Jelito cienkie jest, oprócz wątroby i nerek, głównym miejscem przemian metabolicznych glutaminy. Prowadzą one do syntezy nukleotydów purynowych i pirymidynowych, a także ważnego przeciwutleniacza - glutationu. Glutamina jest także prekursorem dla syntezy proliny i argininy wchodzących w skład białek organizmu. Wpływa na obniżenie ekspresji m.in. genów odpowiedzialnych za stres oksydacyjny, a zwiększa ekspresję genów niezbędnych do wzrostu komórek. Dzięki tym właściwościom glutaminę można uznać za aminokwas niezbędny w żywieniu odsadzonych prosiąt.

Keywords: L-glutamine; piglet rearing; digestive tract

  • Anadón A. (2006). The EU ban of antibiotics as feed additives: alternatives and consumer safety. J. Vet. Pharm. Therap., 29: 41-44.Google Scholar

  • Bailey M., Haverson K., Inman C., Harris C., Jones P., Corfield G., Miller B., Stokes C. (2005). The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc. Nutr. Soc., 64: 451-457.PubMedCrossrefGoogle Scholar

  • Ban K., Kozar R.A. (2010). Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 299: G1344-G1353.Google Scholar

  • Boyd R.D., Kensinger R.S., Harrell R.J., Bauman D.E. (1995). Nutrient uptake and endocrine regulation of milk synthesis by mammary tissue of lactating sows. J. Anim. Sci., 73, (Suppl. 2): 36-56.Google Scholar

  • Brasse - Lagnel C.G., Lavoinne A.M., Husson A.S. (2010). Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 92: 729-735.CrossrefGoogle Scholar

  • Burrin D., Stoll B., Jiang R., Chang X., Hartmann B., Holst J.J., Greely G.H., Reeds P.J. (2000). Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am. J. Clin. Nutr., 71: 1603-1610.Google Scholar

  • Burrin D., Stoll B. (2003). Enhancing intestinal function to improve growth and efficiency. In: Ball R.O. (Ed.) Proc. 9th Intern. Symp. on Digestive Physiology in Pigs. Banff, AB, Canada, pp. 121-138.Google Scholar

  • Burrin D.G., Stoll B. (2009). Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr., 90 (Suppl.): 1S-7S.Web of ScienceGoogle Scholar

  • Chang W.K., Yang K.D., Chuang H., Jan J.T., Shaio M.F. (2002). Glutamine protects activated human Tcells from apoptosis by up-regulating glutathione and Bcl-2 levels. Clin. Immun., 104: 151-160.Google Scholar

  • Curi R., Lagranha C.J., Doi S.Q., Sellitti D.F., Procopio J., Pithon - Curi T.C., Cor- less M., Newsholme P. (2005). Molecular mechanisms of glutamine action. J. Cell Physiol., 204: 392-401.CrossrefGoogle Scholar

  • Dillon E.L., Knabe D.A., Wu G. (1999). Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. Am. J. Physiol., 276: G1079-G1086.Google Scholar

  • Domeneghini C., Di Giancamillo A., Savoini G., Paratte R., Bontempo V., Dell ’ Orto V. (2004). Structural patterns of swine ileal mucosa following L-glutamine and nucleotide administration during the weaning period. An histochemical and histometrical study. Histol. Histopathol., 19: 49-58.PubMedGoogle Scholar

  • Domeneghini C., Di Giancamillo A., Bosi G., Arrighi S. (2006). Can nutraceuticals affect the structure of intestinal mucosa? Qualitative and quantitative microanatomy in L-glutamine diet-supplemented weaning piglets. Vet. Res Com., 30: 331-342.CrossrefGoogle Scholar

  • Eagle H. (1955). Nutritional needs of mammalian cells in tissue culture. Science (Washington DC), 122: 501-504.CrossrefGoogle Scholar

  • Easter R.A., Katz R., Baker D.H. (1974). Arginine: a dispensable amino acid for postpubertal growth and pregnancy of swine. J. Anim. Sci., 39: 1123-1128.Google Scholar

  • Ehrensvard G., Fischer A., Strjenholm E. (1949). Protein metabolism of tissue cells in vitro. The chemical nature of some obligate factors of tissue cell nutrition. Acta Phys. Scand., 18: 218-230.CrossrefGoogle Scholar

  • Ewtushick A.L., Bertolo R.F.P., Ball R.O. (2000). Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can. J. Anim. Sci., 80: 653-662.Google Scholar

  • Hampson D.J. (1986). Alteration in piglet small intestinal structure at weaning. Res. Vet. Sci., 40: 32-40.Google Scholar

  • Haynes T.E., Li P., Li X., Shimotori K., Sato H., Flynn N.E., Wang J., Knabe D.A., Wu G. (2009). L-glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids, 37: 131-142.PubMedGoogle Scholar

  • Hsu C.B., Huang H.J., Wang C.H., Yen H.T., Yu B. (2010). The effect of glutamine supplement on small intestinal morphology and xylose absorptive ability of weaned piglets. African J. Biotechnol., 9: 7003-7008.Google Scholar

  • Johnson I.R., Ball R.O., Baracos V.E., Madsen K.L., Goruk S., Field C.J. (2003). Influence of glutamine on immune development in newly weaned piglets. Adv. Pork Prod., 14, Abstr. 12.Google Scholar

  • Johnson I.R., Ball R.O., Baracos V.E., Field C.J. (2006). Glutamine supplementation influences immune development in the newly weaned piglet. Develop. Compar. Immunol., 30: 1191-1202.CrossrefGoogle Scholar

  • Jones M.E. (1985). Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, apossible modulator of arginine requirements. J. Nutr., 115: 509-515.Google Scholar

  • Kim S.W., Mc Oherson R.L., Wu G. (2004). Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr., 134: 625-630.Google Scholar

  • Kitt S.J., Miller P.S., Fischer R.L. (2004). Supplementation on sow and litter performance, subsequent weanling pig performance and intestinal development after an immune challenge. Nebraska Swine Report, pp. 14-17.Google Scholar

  • Labow B.I., Souba W.W. (2000). Glutamine. World J. Surg., 24: 1503-1513.PubMedCrossrefGoogle Scholar

  • Lallés J-P., Boudry G., Favier C., Le Floc ’h N., Luron I., Montagne L., Oswald I.P., Pie S., Piel C., Séve B. (2004). Gut function and dysfunction in young pigs : physiology. Anim. Res., 53: 301-316.CrossrefGoogle Scholar

  • Le Dividich J., Séve B. (2000). Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Dom. Anim. Endocrinol., 19: 63-74.CrossrefGoogle Scholar

  • Matés J.M., Pérez- Gomez C., Nunezde Castro I., Asenjo M., Marquez J. (2002). Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/ death. Int. J. Biochem. Cell Biol., 34: 439-458.PubMedCrossrefGoogle Scholar

  • Mertz E.T., Beeson W.M., Jackson H.D. (1952). Classification of essential amino acids for weanling pigs. Arch. Biochem Biophys., 38: 121-128.CrossrefPubMedGoogle Scholar

  • Nabuurs M.J., Hoogendoorn A., van Zijderveld -van Bemmel A. (1996). Effect of supplementary feeding during the suckling period on net absorption from the small intestine of weaned pigs. Res. Vet. Sci., 61: 72-77 Newsholme P. (2001). Why is L-glutamine metabolism important to cells of immune system in health, postinjury, surgery or infection? J. Nutr., 131: 2515-2522.CrossrefGoogle Scholar

  • Newsholme P., Lima M.M.R., Procopio J., Pithon - Curi T.C., Doi S.Q., Bazotte R.B., Curi R. (2003). Glutamine and glutamate as vital metabolites. Brazil. J. Med. Biol. Res., 36: 153-163.CrossrefGoogle Scholar

  • O’Quinn P.R., Knabe D.A., Wu G. (2002). Arginine catabolism in lactating porcine mammary tissue. J. Anim. Sci., 80: 467-474.Google Scholar

  • Pluske J.R., Hampson D.J., William I.H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: areview. Livest. Prod. Sci., 51: 215-236.CrossrefGoogle Scholar

  • Reeds P.J., Burrin D.G., Stoll B., Jahoor F., Wykes L., Henry J., Frazer M.E. (1997). Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am. J. Physiol., 273: E408-E415.Google Scholar

  • Ropeleski M.J., Riehm J., Baer K.A., Musch M.W., Chang E.B. (2005). Antiapoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology, 129: 170-184.CrossrefGoogle Scholar

  • Séve B., Reeds P.J., Fuller M.F., Cadenhead A., Hay S.M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early-weaning. Possible connection to the energy metabolism. Reprod. Nutr. Dev., 26: 849-861.Google Scholar

  • Thacker P.A. (1999). Nutritional requirements of early weaned pigs: a review. Pig News Info, 20:13 N-24 N Trottier N.L., Shipley C.F., Easter R.A. (1997). Plasma amino acid uptake by the mammary gland of the lactating sow. J.Anim. Sci., 75: 1266-1278.Google Scholar

  • Wang J., Chen L., Li P., Li X., Zhou H., Wang F., Li D., Yin Y., Wu G. (2008). Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr., 138: 1025-1032.Google Scholar

  • Windmueller H.G., Spaeth A.G. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys., 171: 662-672.PubMedCrossrefGoogle Scholar

  • Wu G., Borbolla A.G., Knabe D.A. (1994). The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J. Nutr., 124: 2437-2444.Google Scholar

  • Wu G., Knabe D.A. (1994). Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr., 124: 415-424.Google Scholar

  • Wu G., Knabe D.A. (1995). Arginine synthesis in enterocytes of neonatal pigs. Am. J. Physiol., 269: R621-R629.Google Scholar

  • Wu G., Knabe D.A., Yan W., Flynn N.E. (1995). Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol., 268: R334-R342.Google Scholar

  • Wu G., Meier S.A., Knabe D.A. (1996). Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr., 126: 2578-2584.Google Scholar

  • Wu G., Fang Y.Z., Yang S., Lupton J.R., Turner N.D. (2004). Glutathione metabolism and its implications for health. J. Nutr., 134: 489-492.Google Scholar

  • Wu G., Bazer F.W., Davis T.A., Jaeger L.A., Johnson G.A., Kim S.W., Knabe D.A., Meininger C.J., Spencer T.E., Yin Y-L. (2007). Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 112: 8-22.CrossrefGoogle Scholar

  • Zhao Y.R., Wang H.Q., He J.H., Fan Z. Y. (2009). Effects of glutamine on intestinal microflora and mucous membrane of weaning piglets. J. Hunan Agric. Univ., 35: 158-161.Google Scholar

  • Zhong X., Zhang X.H., Li X.M., Zhou Y.M., Li W., Huang X.X., Zhang L.L., Wang T. (2011). Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine. J. Anim., Sci., 89: 3634-3642.Google Scholar

  • Zou X.T., Zheng G.H., Fang X.J., Jiang J.F. (2006). Effects of glutamine on growth performance of weanling piglets. Czech. J. Anim. Sci., 51: 444-448. Google Scholar

About the article

Supported by the Ministry of Science and Higher Education, Grant No. N N311 034134


Published Online: 2013-01-29

Published in Print: 2013-01-01


Citation Information: Annals of Animal Science, Volume 13, Issue 1, Pages 5–152, ISSN (Online) , ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/v10220-012-0054-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in