Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
See all formats and pricing
More options …

Effect of Inulin and Garlic Supplementation in Pig Diets / Efektywność dodatku inuliny i czosnku w żywieniu tuczników

Eugeniusz R. Grela
  • Corresponding author
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Pietrzak
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandra Sobolewska
  • Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Witkowski
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10220-012-0059-6


The aim of the study was to determine the effect of supplementing inulin and inulin with garlic extract to pig diets on performance, carcass traits, blood metabolic profile and fatty acid composition of longissimus muscle. The experiment was carried out on 48 crossbred [(PL × PLW) × Duroc] fattening pigs with an initial body weight of 30.0 ± 0.5 kg, which were allocated to 3 groups: I (control), II (3% inulin) and III (3% inulin + 500 ml garlic extract added to 1000 l of drinking water). The pigs whose diets were supplemented with inulin or inulin and garlic achieved significantly (P≤0.05) higher daily weight gains compared to control. Supplemental inulin and water extract of garlic significantly (P≤0.05) lowered cholesterol content in blood and longissimus muscle. The highest level of omega-3 and omega-6 fatty acids was established in the longissimus muscle from pigs in group III.

Streszczenie Celem pracy była ocena wpływu dodatku inuliny oraz inuliny i wodnego wyciągu z czosnku w żywieniu tuczników na efekty produkcyjne, wskaźniki metaboliczne krwi oraz profil kwasów tłuszczowych mięśnia longissimus. Doświadczenie przeprowadzono na 48 tucznikach mieszańcach rasy (pbz × wbp) × Duroc o masie początkowej 30±0,5 kg, podzielonych na 3 grupy: I (kontrolna), II (3% inuliny) oraz III (3% inuliny + 500 ml wodnego wyciągu z czosnku w 1000 l wody). Tuczniki otrzymujące dodatek inuliny lub inuliny i czosnku osiągnęły wyższe dobowe przyrosty masy ciała (P≤0,05) w porównaniu do grupy kontrolnej. Dodatek inuliny i wyciągu wodnego czosnku wpłynął istotnie (P≤0,05) na obniżenie zawartości cholesterolu we krwi oraz w mięśniu longissimus. Zawartość niezbędnych kwasów tłuszczowych omega-3 i omega-6 w mięśniu longissimus była najwyższa u tuczników z grupy III.

Keywords: pig; inulin; garlic; blood; fatty acids

  • Amagase H., Petesch B.L., Matsuura H., Kasuga S., Itakura Y. (2001). Intake of garlic and its bioactive components. J. Nutr., 131: 955-962.Google Scholar

  • AOAC (2005). Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International. Ed.: Cunniff. P. 17th Edition AOAC International: Arlington. VA.Google Scholar

  • Chen Y.J., Kim I.H., Cho J.H., Yoo J.S., Wang Q., Wang Y., Huang Y. (2008). Evaluation of dietary l-carnitine or garlic powder on growth performance, dry matter and nitrogen digestibilities, blood profiles and meat quality in finishing pigs. Anim. Feed Sci. Technol., 141: 141-152.CrossrefGoogle Scholar

  • Crittenden R., Planyne M. (1996). Production, properties and applications of food grade oligosaccharides. Trends Food Sci. Technol., 7: 353-361.Google Scholar

  • Dieumonu F.E., Teguia A., Kulatwe J.R., Tamokou J.D., Doma U.D., Abdullahi U.S., Chiroma A.E. (2012). Effect of diets fortified with garlic organic extract and streptomycin sulphate on growth performance and carcass characteristics of broilers. Inter. J. Livest. Prod., 3 (4): 36-42.Google Scholar

  • Durakİ., Kavutcu M., Aytaç B., Avcı A., Devrim E., Özbek H., Öztürk H.S. (2004).Google Scholar

  • Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J. Nutr. Bioch., 15: 373-377.Google Scholar

  • Folch J., Less M., Stanley G.H.S. (1957). Asimple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497-509.Google Scholar

  • Friedewald W.T., Levy R.I., Fredickson D.S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502.PubMedGoogle Scholar

  • Friendship R.M., Henry S.C. (1996). Cardiovascular system, haematology and clinical chemistry. In: Leman A.D., Straw B.E., Mengeling W.L., D’Alliaire S., Taylor D.J. (Eds), Diseases of swine. Iowa State Univ. Press, USA, pp. 3-11.Google Scholar

  • Grela E.R., Klebaniuk R. (2007). Chemical composition of garlic preparation and its utilization in piglet diets. Med. Weter., 63 (7): 792-795.Google Scholar

  • Grela E.R., Czech A., Kowalczuk- Vasilev E. (2011). Growth promoters and other fodder additives. In: Grela E.R. (Ed.), Chemistry and biotechnology in animal production (in Polish). PWRiL, Warszawa, pp. 103-130.Google Scholar

  • Grela E.R., Pastuszak J., Bloch U. (2009). Handbook of modern pig feeding. Recommendation for practice (in Polish). SRRi L Progress, Lublin.Google Scholar

  • Holden P.J., Mc Kean J. (2000). Botanicals for pigs - Garlic II (ASL-R648). 2000 ISU Swine Research Report. Iowa State University, Ames, IA.Google Scholar

  • Isaacsohn J.L., Moser M., Stein E.A., Davey J.A., Dudley K., Liskov E., Black H.R. (1998). Garlic powder and plasma lipids and lipoproteins: amulticenter, randomized, placebo-controlled trial. Arch. Intern. Med., 158: 1189-1194.CrossrefGoogle Scholar

  • Kamanna V.S., Chandrasekhara N. (1980). Fatty acid composition of garlic (Allium sativum Linnaeus) lipids. J. Am. Oil Chem. Soc., 57: 175-176.CrossrefGoogle Scholar

  • Kandil O.M., Abdellah T.H., Elkadi A. (1987). Garlic and the immune system in humans: its effects on natural killer cells. Fed. Proc., 46: 441.Google Scholar

  • Kirchgessner M., Roth F.X. (1983). Schätzgleichungen zur Ermittlung des energetischen Futterwertes von Mischfuttermitteln für Schweine. J. Anim. Physiol. Anim. Nutr., 50: 270-275.Google Scholar

  • Kjos N.P., Øverland M., Fauske A.K., Sørum H. (2009). Feeding chicory inulin for entire male pigs during the last period until slaughter. Proc. 11th International Symposium on Digestive Physiology of Pigs. Montbriódel Camp, Spain.Google Scholar

  • Kjos N.P., Øverland M., Fauske A.K., Sørum H. (2010). Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci., 134: 143-145.CrossrefGoogle Scholar

  • Konjufca V.H., Pesti G.M., Bakalli R.I. (1997). Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poultry Sci., 76: 1264-1271.Google Scholar

  • Kuleta Z., Polakowska - Nowak G., Wosek J., Nieradka R. (1993). Values of hematologic and biochemical indexes in animals inastate of health and illness (in Polish). ART, Olsztyn.Google Scholar

  • Loh G., Eberhard M., Brunner R.M., Hennig U., Kuhla S., Kleessen B., Metges C.C. (2006). Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr., 136: 1198-1202.Google Scholar

  • Omojola A.B., Fagbuaro S.S., Ayeni A.A. (2009). Cholesterol content, physical and sensory properties of pork from pigs fed varying levels of dietary garlic (Allium sativum). World Appl. Sci. J., 6 (7): 971-975.Google Scholar

  • Paschma J., Wawrzy ński M. (2007). Effect of using herbs in pig diets on growth parameters, carcass traits and dietetic value of pork. Pol. J. Nat. Sci., 4: 71-76.Google Scholar

  • Pedersen A., Sandström B., van Amelsvoort J.M. (1997). The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br. J. Nutr., 78: 215-222.Google Scholar

  • Qureshi A.A., Crenshaw T.D., Abuirmeileh N., Peterson D.M., Elson C.E. (1987). Influence of minor plant constituents on porcine hepatic lipid metabolism: impact on serum lipids. Atherosclerosis, 64: 109-115.PubMedCrossrefGoogle Scholar

  • Rhee K.S., Dutson T.R., Smith G.C. (1982). Effect of changes in intermuscular and subcutaneous fat levels on cholesterol content of raw and cooked beef steaks. J. Food Sci., 47: 1638-1642.CrossrefGoogle Scholar

  • Różycki M., Tyra M. (2010). Methodology for assessing fattening and slaughter value in the Slaughter Quality Control Station (SKURTCh). Condition of breeding and results of pig evaluation (in Polish). Wyd. IZ PIB, Kraków, pp. 94-105.Google Scholar

  • Tatara M., Śliwa E., Dudek K., Mosiewicz J., Studzi ński T. (2005). Effect of aged garlic extract and allicin administration to sows during pregnancy and lactation on body weight gain and gastrointestinal tract development of piglets. Part I. Bull. Vet. Inst. Pulawy, 49: 349-355.Google Scholar

  • Windisch W.M., Schedle K., Plitzner C., Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 86: 140-148.Google Scholar

  • Winnicka A. (2004). Reference values of basic laboratory analysis in veterinary medicine (in Polish).Google Scholar

  • SGGW, Warszawa, pp. 17-20, 29, 48.Google Scholar

  • Yan L., Meng Q.W., Ao X., Zhou T.X., Yoo J.S., Kim H.J., Kim I.H. (2011). Effects of fermented garlic powder supplementation on growth performance, blood characteristics and meat quality in finishing pigs fed low-nutrient-density diets. Livest. Sci., 137: 255-259.CrossrefGoogle Scholar

  • Yan X., Wang Z., Barlow P. (1992). Quantitative estimation of garlic oil content in garlic oil based health products. Food Chem., 45: 135-139.CrossrefGoogle Scholar

  • Yasuda K., Roneker K.R., Miller D.D., Welch R.M., Lei X.G. (2006). Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J. Nutr., 136: 3033-3038.Google Scholar

  • Yeh Y.Y., Yeh S.M. (1994). Garlic reduces plasma lipids by inhibiting hepatic cholesterol and triacylglycerol synthesis. Lipids, 29: 189-193.PubMedCrossrefGoogle Scholar

  • Yeh Y.Y., Liu L. (2001). Cholesterol-lowering effects of garlic extracts and organosulfur compounds: human and animal studies. J. Nutr., 131: 989-993. Google Scholar

About the article

Published Online: 2013-01-29

Published in Print: 2013-01-01

Citation Information: Annals of Animal Science, Volume 13, Issue 1, Pages 63–71, ISSN (Online) , ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/v10220-012-0059-6.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in