Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

Effect of Dietary Acidifier on Growth, Mortality, Post-Slaughter Parameters and Meat Composition of Broiler Chickens / Wpływ zakwaszacza diety na masę ciała, śmiertelność, wydajność rzeźną i skład mięsa kurcząt rzeźnych

Franciszek Brzóska
  • Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogdan Śliwiński
  • Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga Michalik-Rutkowska
  • Department of Food Security, Ministry of Agriculture and Rural Development, Wspólna 30, 00-930 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-29 | DOI: https://doi.org/10.2478/v10220-012-0061-z

Abstract

An experiment with 608 broiler chickens was conducted to investigate the effect of dietary acidifier level on body weight, feed consumption and conversion, mortality, dressing percentage, postmortem carcass traits, tissue composition of breast and leg muscles, and plasma chemical parameters. Feeding the acidifier to chickens at 3, 6 and 9 g/kg of the diet reduced the pH of starter and grower diets from 6.90 to 5.89, and from 6.28 to 5.73, respectively. Compared to the control group, dietary acidification significantly increased body weight of chickens by 6.2, 8.2 and 8.2% at 21 days of age, and by 2.7, 3.6 and 3.7% at 42 days of age, respectively (P<0.01). Mortality decreased from 2.58% in the control group to 0.00-0.59% in the experimental groups (P<0.01). Acidification of the diets increased EEI-index from 327 (control group) to 348 points in the experimental group supplemented with 9% (9 g/kg) acidifier, but had no significant effect on feed consumption and feed conversion ratio among treatments. The relative weight of breast and leg muscles, gizzard, liver and carcass depot fat was not affected by dietary treatments. Breast muscles represented 27.7% (control group) and 27.9% (experimental groups) of the carcass weight. Leg muscles made up 21.5% and 20.7% of the carcass weight, respectively. There were no significant differences in chemical composition of breast and leg muscles, including dry matter, protein and fat content. No significant differences between the control and experimental chickens were noted for determined blood plasma constituents, glucose, total protein, triglycerides, total cholesterol and high density lipoprotein. The results suggested that organic acid acidifier used in this experiment at the rates of 3 to 9 g/kg diet has a growth enhancing and mortality reducing effect in broiler chickens, with no significant influence on carcass yield, proportion of individual carcass parts and blood plasma constituents. It seems that the amount of 6g of the applied acidifier per kilogram of feed may be recommended as the optimum dietary level if protein in the diet does not exceed 200-230 g crude protein per kilogram of diet.

Streszczenie W doświadczeniu wykonanym na 608 kurczętach rzeźnych Ross 308 badano wpływ zakwaszacza diety na masę ciała, spożycie i wykorzystanie paszy, śmiertelność ptaków, wydajność rzeźną, cechy poubojowe tuszek, skład chemiczny mięśni piersiowych i nóg oraz wskaźniki chemiczne osocza krwi. Podawanie zakwaszacza kurczętom w ilości 0, 3, 6 i 9 g/kg diety obniżyło odczyn (pH) diety na pierwszy okres chowu (1-21 dni) z 6,90 do 5,89, a drugi okres chowu (22-42 dni) z 6,28 do 5,73. W porównaniu z grupą kontrolną, nie otrzymującą zakwaszacza, istotnie wzrosła masa ciała kurcząt 42. dnia życia, odpowiednio o 2,3; 3,6 i 3,7% (P<0,01). Śmiertelność zmalała z 2,58% w grupie kontrolnej do 0,00-0,59% w grupach doświadczalnych (P<0,01). Zakwaszenie diety nie miało istotnego wpływu na spożycie i wykorzystanie paszy. Nie stwierdzono istotnych różnic w masie mięśni piersiowych i mięśni nóg, a także masie żołądka, wątroby i tłuszczu zapasowego ptaków. Mięśnie piersiowe miały 21,6% w grupie kontrolnej i 21,3% masy tuszki w grupie doświadczalnej. Zakwaszenie diety zwiększyło wartość indeksu EEI z 327 (grupa kontrolna) do 348 (grupa doświadczalna), przy 9 g/kg zakwaszacza. Nie stwierdzono istotnych różnic w składzie chemicznym mięśni piersiowych i mięśni nóg, w tym zawartości suchej masy, białka ogólnego, tłuszczu surowego i popiołu. Zawartość białka w mięśniach piersiowych wynosiła 23,58% w grupie kontrolnej i 23,86% średnio w grupach doświadczalnych (P≥0,01). Zawartość białka w mięśniach nóg wynosiła odpowiednio 19,56% i 19,58% (P≥0,01). Nie stwierdzono istotnych różnic we wskaźnikach osocza krwi. Wnioskowano, że zakwaszacz zawierający kwas propionowy i sole kwasu mrówkowego oraz masłowego poprawia efektywność produkcji kurcząt rzeźnych istotnie obniżając straty powodowane zakażeniami bakteryjnymi przewodu pokarmowego. Użycie zakwaszacza od 3 do 6 g/kg diety istotnie zwiększa masę ciała i tuszek kurcząt nie powodując istotnych różnic w masie i proporcjach poszczególnych partii tuszek. Optymalny poziom preparatu of Acidomix AFG w diecie dla kurcząt zawierającej 206-230 g białka ogólnego wynosił 6 g/kg.

Keywords : broiler chicken; dietary acidifier; growth performance; mortality; carcass indices; meat composition; blood plasma parameters

  • AOAC (1990). Official Methods of Analysis. Association of Analytical Chemists. 15th Edition. Arlington, VA.Google Scholar

  • Award W.A., Ghareeb K., Abdel- Raheem S., Böhm J. (2009). Effect of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Sci., 88 (1): 49-56.Google Scholar

  • Axe D.D., Bailey J.E. (1995). Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng., 47: 8-19.CrossrefPubMedGoogle Scholar

  • Bassan J.D.L., Flôres M.L., Antoniazzi T., Bianchi E., Kuttel J., Trindade M.M. (2008). Control of the infection caused by Salmonella Enteritidis with organic acids and mannanoligosaccharide in broiler. Ciência Rural, 38 (7): 1961-1965.Google Scholar

  • Brzóska F., Buluchevskij S.B., Śliwi ński B., Stecka K. (2005). Preliminary study of the microbial spectrum of the digestive tract in broilers fed diets with and without antibiotic supplementation. J. Anim. Feed Sci., 14 (Suppl.): 431-434.Google Scholar

  • Brzóska F., Buluchewskij S., Śliwi ński B., Stecka K. (2007). Effect of lactic acid bacteria and mannan oligosaccharide, with or without fumaric acid, on chicken performance, mortality and carcass yield. J. Anim. Feed Sci., 16: 241-251.Google Scholar

  • Brzóska F. (2007). Effect of organic acids, probiotics and prebiotics on body weight, mortality and carcass quality of slaughter chickens (in Polish). Med. Weter., 63 (7): 753-880.Google Scholar

  • Brzóska F., Stecka K. (2007). Effect of probiotic, prebiotic and acidifier on the body weight of broiler chickens, feed conversion, and carcass and meat composition. Ann. Anim. Sci., 7: 279-288.Google Scholar

  • Byrd J.A., Hargis B.M., Caldwell D.J., Bailey R.H., Herron K.L., Mc Reynolds J.L., Brewer R.L., Anderson R.C., Bischoff K.M., Callaway T.R., Kubena L.F. (2009). Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poultry Sci., 80: 278-283.Google Scholar

  • Chaveerach P., Keuzenkamp D.A., Lipman L.J.A., Van Knapen F. (2004). Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poultry Sci., 83: 330-334.Google Scholar

  • Cherrington C.A., Hinton M., Chopra I. (1990). Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J. Bacteriol., 68: 69-74.CrossrefGoogle Scholar

  • Cherrington C.A., Hinton M., Pearson G.R., Chopa I. (1991). Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. Appl.Google Scholar

  • Bacteriol., 70: 161-165.Google Scholar

  • Czerwiński J., H øjberg O., Smulikowska S., Engberg R.M., Miecznikowska A. (2010). Influence of dietary peas and organic acid and probiotic supplementation on performance and caecal microbial ecology of broiler chickens. Brit. Poultry Sci., 51 (2): 258-269.CrossrefWeb of ScienceGoogle Scholar

  • Dixon R.C., Hamilton P.B. (1981). Effect of feed ingredients on the antifungal activity of propionic acid. Poultry Sci., 60: 2407-2411.CrossrefGoogle Scholar

  • Eklund T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different p Hlevels. Appl. Bacteriol., 54: 383-389.CrossrefGoogle Scholar

  • García V., Catalá-Gregori P., Hern ández F., Megias M.D., Madrid J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. J. Appl. Poult. Res., 16 (4): 555-562.CrossrefWeb of ScienceGoogle Scholar

  • Gholamiandehkordi A.R., Timbermont L., Lanckriet A., Van Der Broeck W., Pedersen K., Dewulf J., Pasmans F., Haesebrouck F., Ducatelle R., Van Im - merseel F. (2007). Quantification of gut lesions inasubclinical necrotic enteritis model. Avian. Patol., 36: 375-382.Google Scholar

  • Hinton H., Linton A.H. (1988). Control of salmonella infections in broiler chicken by the acid treatment of their feed. Vet. Rec., 15: 416-421.CrossrefGoogle Scholar

  • Jamroz D., Wiliczkiewicz A., Orda J., Wertelecki T., Skorupińska J. (2004). Response of broiler chickens to the diets supplemented with feeding antibiotic or mannanoligosaccharides. EJPAU, 7, 2. http://www.ejpau.media.pl/volume7/issue2/animal/art-06.html Google Scholar

  • Jang H.D., Yoo J.S., Kim H.J., Shin S.O., Hwang Y., Zhou T.X., Chen Y.J., Cho J.H., Kim I.H. (2008). Effect of dietary organic acid mixture on growth performance, organ weight, blood immunological parameter and intestinal villi morphology in broilers. Korean J. Poultry Sci., 35 (1): 57-62.Google Scholar

  • Kalavathy R., Abdullah N., Jalaludin S., Ho Y.W. (2003). Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Brit. Poultry Sci., 44: 139-144.CrossrefGoogle Scholar

  • Mahdavi R., Torki M. (2009). Study on usage period of dietary protected butyric acid on performance, carcass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv., 8 (9): 1702-1709.Google Scholar

  • Mc Han F., Shotts E.B. (1992). Effect of feeding selected short-chain fatty acids on the in vitro attachment of Salmonella typhimurium in chick ceca. Avian. Dis., 36: 139-142.CrossrefGoogle Scholar

  • Mikkelsen L.L., Vidanarachchi J.K., Olnood C.G., Bao Y.M., Selle P.H., Choct M. (2009). Effect of potassium diformate on growth performance and gut microbiota in broiler chickens challenged with necrotic enteritis. Brit. Poultry Sci., 50 (1): 66-75.CrossrefWeb of ScienceGoogle Scholar

  • Mikulski D., Zduńczyk Z., Jankowski J., Ju śkiewicz J. (2008). Effects of organic acids or natural plant extracts added to diets for turkeys on growth performance, gastrointestinal tract metabolism and carcass characteristics. J. Anim. Feed Sci., 17 (2): 233-246.Google Scholar

  • Mountzouris K.C., Tsistsikos P., Kalamara E., Nitsh E., Schatzmayr G., Fegeros K. (2007). Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Sci., 86: 309-317.Google Scholar

  • Patterson J.A., Burkholder K.M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Sci., 82: 627-631.Google Scholar

  • Paul S.K., Halder G., Mondal M.K., Gautam S. (2007). Effect of organic acid salt on the performance and gut health of broiler chicken. J. Poultry Sci., 44 (4): 389-395.CrossrefGoogle Scholar

  • Puyalto M., Locatelli M.L. (2008). GUSTOR BP-70: gradual release of sodium butyrate ensures maximum effect in broiler against Salmonella infection. Feed Compounder, 28 (1): 26-28.Google Scholar

  • Ricke S.C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials.PubMedGoogle Scholar

  • Poultry Sci., 82: 632-639.Google Scholar

  • Rouse J., Rolow A., Nelson C.E. (1988). Research note: Effect of chemical treatment of poultry feed on survival of Salmonella. Poultry Sci., 67: 1225-1228.CrossrefGoogle Scholar

  • Russell J.B. (1992). Another explanation for the toxicity of fermentation acids at low p H: Anion accumulation versus uncoupling. J. Appl. Bacteriol., 130: 2845-2850.Google Scholar

  • Salmond C.V., Kroll R.C., Booth I.R (1984). The effect of food preservative on p Hhomeostasis in Escherichia coli. Gen. Microbiol., 130: 2845-2850.CrossrefGoogle Scholar

  • Simon O., Jadamus A., Vahjen W. (2001). Probiotic feed additives - effectiveness and expected modes of action. J. Anim. Feed Sci., 10, Suppl. 1: 51-67.Google Scholar

  • Świątkiewicz S., Koreleski J., Arczewska A. (2010). Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acid. Czech J. Anim. Sci., 55 (7): 294-304.Google Scholar

  • Thomson J.L., Hinton M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on salmonellas in the crop. Brit. Poultry Sci., 38: 59-65.CrossrefGoogle Scholar

  • Van Der Sluis W. (2000). Clostridial enteritis is an often underestimated problem. World Poultry, 16: 42-43.Google Scholar

  • Viola E.S., Vieira S.L. (2007). Supplementation of organic and inorganic acidifiers in diets for broiler chickens: performance and intestinal morphology (in Portuguese). R. Bras. Zootec., 36 (Suppl. 4): 1097-1104.CrossrefWeb of ScienceGoogle Scholar

  • Young L.L., Northcutt J.K., Buhr R.J., Lyon C.E., Ware G.O (2001). Effect of age, sex, and duration of postmortem aging on percentage yield of parts from broiler chicken carcasses. Poultry Sci., 80: 376-379.Google Scholar

  • Zgłobica A., Różycka B. (1972). Chicken carcass slaughter methods (in Polish). Ed. Ministry of Agriculture and Forestry, Warszawa, pp. 72-85. Google Scholar

About the article

Study performed as part of NRIAP statutory activity, project No. 05-3.2.1.


Published Online: 2013-01-29

Published in Print: 2013-01-01


Citation Information: Annals of Animal Science, Volume 13, Issue 1, Pages 85–96, ISSN (Online) , ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/v10220-012-0061-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in