Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

Bacteriocins In Poultry Nutrition – A Review / Bakteriocyny w żywieniu drobiu – artykuł przeglądowy

Damian Józefiak
  • Corresponding author
  • Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Sip
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-01 | DOI: https://doi.org/10.2478/aoas-2013-0031

Abstract

In recent years, a number of studies have shown a close relationship between broiler performance, health and the gastrointestinal microbiota. However, taking the complexity and biodiversity of the micro-ecosystem into consideration, a manipulation of the microbiota in a way that is profitable both for the host bird and for the farmer seems a difficult goal to achieve. Bacteriocins are extracellular proteinaceous compounds, synthesized by many bacterial species. Due to their different bacteriostatic effects, they have been used in human nutrition for decades. However, limited information is available regarding their effects in poultry, even though that similar mode of action as in other animals is possible. Therefore, the aim of the present review is to discuss present bacteriocin classification, mode of action and their potential role in poultry nutrition.

Streszczenie

W ostatnich latach ukazało się wiele prac ilustrujących ścisły związek między wynikami odchowu kurcząt rzeźnych a rozwojem endogennej mikroflory przewodu pokarmowego. Z uwagi na bioróżnorodność tego skomplikowanego mikroekosystemu, osiągnięcie potencjalnych korzyści dla ptaka-gospodarza poprzez manipulację jego flory bakteryjnej nie jest łatwym zadaniem. Bakteriocyny są substancjami białkowymi wytwarzanymi przez wiele mikroorganizmów. Ich bakteriobójcze i bakteriostatyczne właściwości są wykorzystywane od wielu lat w żywieniu ludzi. Jednak w dostępnej literaturze naukowej brakuje informacji na temat zastosowania tych związków w dietach dla kurcząt rzeźnych. Dlatego też w niniejszym artykule przeglądowym przedstawiono aktualną klasyfikację bakteriocyn, ich działanie i wykorzystanie w żywieniu drobiu.

Keywords : poultry; feed additives; microbiota; bacteriocins

  • Adebayo C.O., Aderiye B.I. (2011). Suspected mode of antimycotic action of brevicin SG1 against Candida albicans and Penicillium citrinum. Food Control, 22: 1814-1820.CrossrefGoogle Scholar

  • Alloui M.N., Szczurek W., Świ ątkiewicz S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition:areview. Ann. Anim. Sci., 13: 17-32.Google Scholar

  • Audisio M.C., Oliver G., Apella M.C. (1999). Antagonistic effect of Enterococcus faecium J96 against human and poultry pathogenic Salmonella spp. J. Food Prot., 62: 751-755.Google Scholar

  • Barnby - Smith F.M. (1992). Bacteriocins: applications in food preservation. Trends Food Sci. Technol., 3: 133-137.Google Scholar

  • Belguesmia Y., Madi A., Sperandio D., Merieau A., Feuilloley M., Prevost H., Drider D., Connil N. (2011). Growing insights into the safety of bacteriocins: the case of enterocin S37. Res. Microbiol., 162: 159-163.CrossrefGoogle Scholar

  • Bordignon S.E., Miyaoka M.F., Spier M.R., Rubel R., Soccol V.T., Soccol C.R. (2011). Production biomolecule with inhibitory activity against Gram-negative bacteria isolated from faeces of broilers and swine. Braz. Arch. Biol. Technol., 54: 723-731.CrossrefGoogle Scholar

  • Choct M. (2009). Managing gut health through nutrition. Br. Poultry Sci., 50: 9-15.CrossrefGoogle Scholar

  • Cleveland J., Montville T.J., Nes I.F., Chikindas M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol., 71: 1-20.PubMedCrossrefGoogle Scholar

  • Cole K., Farnell M., Donoghue A., Stern N., Svetoch E., Eruslanov B., Volo -dina L., Kovalev Y., Perelygin V., Mitsevich E. (2006). Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poultry Sci., 85, p. 1570.Google Scholar

  • Cotter P.D., Hill C., Ross R.P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3: 777-788.PubMedCrossrefGoogle Scholar

  • Dahiya J., Wilkie D., Van Kessel A., Drew M. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol., 129: 60-88.CrossrefGoogle Scholar

  • De Vuyst L., Leroy F. (2007). Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol., 13: 194-199.CrossrefGoogle Scholar

  • Deegan L.H., Cotter P.D., Hill C., Ross P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J., 16: 1058-1071.CrossrefGoogle Scholar

  • Diep D.B., Skaugen M., Salehian Z., Holo H., Nes I.F. (2007). Common mechanisms of target cell recognition and immunity for class IIbacteriocins. Proc. Natl. Acad. Sci. USA, 104: 2384-2389.CrossrefGoogle Scholar

  • Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev., 24: 85-106.PubMedCrossrefGoogle Scholar

  • Galvez A., Abriouel H., Lopez R.L., Ben Omar N. (2007 a). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol., 120: 51-70.PubMedCrossrefGoogle Scholar

  • Galvez A., Abriouel H., Lopez R.L, Omar N.B. (2007 b). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol., 120: 51-70.PubMedCrossrefGoogle Scholar

  • Galvez A., Lopez R.L, Abriouel H., Valdivia E., Ben Omar N. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol., 28: 125-152.CrossrefPubMedGoogle Scholar

  • Gholamiandehkordi A., Timbermont L., Lanckriet A., Broeck W.V.D., Peder-sen K., Dewulf J., Pasmans F., Haesebrouck F., Ducatelle R., Van Immerseel F. (2007). Quantification of gut lesions inasubclinical necrotic enteritis model. Avian Pathol., 36: 375-382.CrossrefGoogle Scholar

  • Grilli E., Messina M.R., Catelli E., Morlacchini M., Piva A. (2009). Pediocin Aimproves growth performance of broilers challenged with Clostridium perfringens. Poultry Sci., 88: 2152-2158.CrossrefGoogle Scholar

  • Hechard Y., Sahl H.D. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84: 545-557.PubMedCrossrefGoogle Scholar

  • Jack R., Tagg J., Ray B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59: 171-200.PubMedGoogle Scholar

  • Joerger R. (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci., 82, p. 640.Google Scholar

  • Johansen C.H., Bjerrum L., Pedersen K. (2007). Impact of salinomycin on the intestinal microflora of broiler chickens. Acta Vet. Scand., 49, p. 30.PubMedCrossrefGoogle Scholar

  • Józefiak D., Rutkowski A., Kaczmarek S., Jensen B.B., Engberg R.M., Hoj-berg O. (2010 a). Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br. Poultry Sci., 51: 546-557.CrossrefGoogle Scholar

  • Józefiak D., Rutkowski A., Martin S.A. (2004). Carbohydrate fermentation in the avian ceca:areview. Anim. Feed Sci. Technol., 113, pp. 1-15.Google Scholar

  • Józefiak D., Sip A., Kaczmarek S., Rutkowski A. (2010 b). The effects of Carnobacteriumdivergens AS7 bacteriocin on gastrointestinal microflora in vitro and on nutrient retention in broiler chickens. J. Anim. Feed Sci., 19: 460-467.Google Scholar

  • Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jen-sen B.B., Engberg R.M. (2011 a). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Br. Poultry Sci., 52: 492-499.CrossrefGoogle Scholar

  • Józefiak D., Sip A., Rawski M., Steiner T., Rutkowski A. (2011 b). The dose response effects of liquid and lyophilized Carnobacterium divergens AS7 bacteriocin on the nutrient retention and performance of broiler chickens. J. Anim. Feed Sci., 20: 401-411.Google Scholar

  • Józefiak D., Sip A., Rutkowski A., Rawski M., Kaczmarek S., Wolun- Chole- wa M., Engberg R.M., Hojberg O. (2012). Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Sci., 91: 1899-1907.CrossrefGoogle Scholar

  • Kaldhusdal M., Evensen O., Landsverk T. (1995). Clostridium perfringens necrotizing enteritis of the fowl:alight microscopic, immunohistochemical and ultrastructural study of spontaneous disease. Avian Pathol., 24: 421-433.CrossrefGoogle Scholar

  • Kaldhusdal M., Hofshagen M. (1992). Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings inamild form of necrotic enteritis. Poultry Sci., 71: 1145-1153.Google Scholar

  • Klaenhammer T.R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12: 39-85.PubMedGoogle Scholar

  • Laukova A., Guba P., Nemcova R., Vasilkova Z. (2003). Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Vet. Res. Commun., 27: 275-280.CrossrefGoogle Scholar

  • Le Blay G., Lacroix C., Zihler A., Fliss I. (2007). In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett. Appl. Microbiol., 45: 252-257.PubMedGoogle Scholar

  • Leisner J.R.J., Laursen B.G, Pr Èvost H., Drider D., Dalgaard P. (2007). Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol. Rev., 31: 592-613.CrossrefGoogle Scholar

  • Line J.E., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mit-sevich I.P., Levchuk V.P., Svetoch O.E., Seal B.S., Siragusa G.R., Stern N.J. (2008). Isolation and purification of enterocin E-760 with broad antimicrobial activity against grampositive and gram-negative bacteria. Antimicrob. Agents Chemother., 52: 1094-1100.Google Scholar

  • Lu J., Hofacre C., Smith F., Lee M.D. (2008). Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal, 2: 669-676.PubMedGoogle Scholar

  • Marugg J.D. (1991). Bacteriocins, their role in developing natural products. Food Biotechnol., 5: 305-312.CrossrefGoogle Scholar

  • Montville T.J., Winkowski K., Ludescher R.D. (1995). Models and mechanisms for bacteriocin action and application. Int. Dairy J., 5: 797-814.CrossrefGoogle Scholar

  • Musikasang H., Sohsomboon N., Tani A., Maneerat S. (2012). Bacteriocin-producing lactic acid bacteria asaprobiotic potential from Thai indigenous chickens. Czech J. Anim. Sci., 57: 137-149.Google Scholar

  • Nava G.M., Bielke L.R., Callaway T.R., Castaneda M.P. (2005). Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Anim. Health Res. Rev., 6: 105-118.PubMedCrossrefGoogle Scholar

  • Nazef L., Belguesmia Y., Tani A., Prevost H., Drider D. (2008). Identification of lactic acid bacteria from poultry feces: evidence on anti-Campylobacter and anti-Listeria activities. Poultry Sci., 87, p. 329.Google Scholar

  • Nes I.F., Diep D.B, Havarstein L.S., Brurberg M.B., Eijsink V., Holo H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Molec. Microbiol., 70: 113-128.Google Scholar

  • O ' Sullivan L., Ross R.P., Hill C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84: 593-604.CrossrefGoogle Scholar

  • Ogunbanwo S.T., Sanni A.I., Onilude A.A. (2004). Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World J. Microbiol. Biotechnol., 20: 51-56.Google Scholar

  • Portrait V., Cottenceau G., Pons A.M. (2000). A Fusobacterium mortiferum strain producesabacteriocin-like substance(s) inhibiting Salmonella enteritidis. Lett. Appl. Microbiol., 31: 115-117.CrossrefGoogle Scholar

  • Rehman H., Vahjen W., Awad W., Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archiv. Anim.319-335.Google Scholar

  • Richard C., Cañon R., Naghmouchi K., Bertrand D., Pr ēvost H., Drider D. (2006). Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiol., 23: 175-183.CrossrefGoogle Scholar

  • Rihakova J., Petit V.W., Demnerova K., Prevost H., Rebuffat S., Drider D. (2009). Insights into Structure-Activity Relationships in the C-Terminal Region of Divercin V41,a Class IIa Bacteriocin with High-Level Antilisterial Activity. Applied and Environmental Microbiology, 7: 1811-1819.CrossrefGoogle Scholar

  • Robyn J., Rasschaert G., Messens W., Pasmans F., Heyndrickx M. (2012). Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Benef. Mirbobes, 3: 299-308.CrossrefGoogle Scholar

  • Schillinger U., Geisen R., Holzapfel W.H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol., 7: 158-164.Google Scholar

  • Shin M.S., Han S.K., Ji A.R., Kim K.S., Lee W.K. (2008). Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol., 105: 2203-2212.CrossrefGoogle Scholar

  • Sip A., Grajek W., Boyaval P. (1998). Enhancement of bacteriocin production by Carnobacteriumdivergens AS7 in the presence ofabacteriocin-sensitive strain Carnobacterium piscicola. Int. J. Food Microbiol., 42: 63-69.Google Scholar

  • Stern N.J., Svetoch E.A., Eruslanov B.V., Kovalev Y.N., Volodina L.I., Perely -gin V.V., Mitsevich E.V., Mitsevich I.P., Levchuk V.P.. (2005). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J. Food Prot., 68: 1450-1453.Google Scholar

  • Stern N.J., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mit-sevich I.P., Pokhilenko V.D., Levchuk V.P., Svetoch O.E., Seal B.S. (2006). Isolation ofaLactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother., 50: 3111-3116.Google Scholar

  • Tahiri I., Desbiens M., Benech R., Kheadr E., Lacroix C., Thibault S., Ouel -let D., Fliss I. (2004). Purification, characterization and amino acid sequencing of divergicin M35:anovel class IIa bacteriocin produced by Carnobacterium divergens M35. Int. J. Food Microbiol., 97: 123-136.CrossrefGoogle Scholar

  • Totton S.C., Farrar A.M., Wilkins W., Bucher O., Waddell L.A., Wilhelm B.J., Mc - Ewen S.A., Rajic A. (2012). The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: Asystematic review, meta-analysis, and meta-regression approach. Prev. Vet. Med., 106: 197-213.CrossrefGoogle Scholar

  • Van Immerseel F., Rood J., Moore R., Titball R. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol., pp. 32-36.Google Scholar

  • Williams R.B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol., 34: 159-180.CrossrefPubMedGoogle Scholar

  • Wilson J., Tice G., Brash M.L., St Hilaire S. (2005). Manifestations of Clostridium perfringens and related bacterial enteritides in broiler chickens. Worlds Poultry Sci. J., 61: 435-449.Google Scholar

About the article

Consortium research project carried out in a frame of EU Structural Funds, WNP-POIG.01.03.01- 30-179/09


Published Online: 2013-08-01

Published in Print: 2013-07-01


Citation Information: Annals of Animal Science, Volume 13, Issue 3, Pages 449–462, ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/aoas-2013-0031.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
B. Kierończyk, E. Pruszyńska-Oszmałek, S. Świątkiewicz, M. Rawski, J. Długosz, E.M. Engberg, and D. Józefiak
Journal of Animal and Feed Sciences, 2016, Volume 25, Number 4, Page 309
[2]
Aleksandra Dunislawska, Anna Slawinska, Katarzyna Stadnicka, Marek Bednarczyk, Piotr Gulewicz, Damian Jozefiak, Maria Siwek, and Brenda A. Wilson
PLOS ONE, 2017, Volume 12, Number 1, Page e0168587
[3]
Mateusz Rawski, Bartosz Kierończyk, Jakub Długosz, Sylwester Świątkiewicz, Damian Józefiak, and Jose Luis Balcazar
PLOS ONE, 2016, Volume 11, Number 2, Page e0147859
[4]
Damian Józefiak, Bartosz Kierończyk, Jerzy Juśkiewicz, Zenon Zduńczyk, Mateusz Rawski, Jakub Długosz, Anna Sip, Ole Højberg, and Gunnar Loh
PLoS ONE, 2013, Volume 8, Number 12, Page e85347
[5]
Bartosz Kierończyk, Mateusz Rawski, Jakub Długosz, Sylwester Świątkiewicz, and Damian Józefiak
Annals of Animal Science, 2016, Volume 16, Number 3
[6]
Ji Guo-zhen and Wang Li
Journal of Northeast Agricultural University (English Edition), 2014, Volume 21, Number 4, Page 31

Comments (0)

Please log in or register to comment.
Log in