Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

Genetic Basis of Mastitis Resistance in Dairy Cattle – A Review / Podstawy Genetyczne Odporności Krów Mlecznych Na Zapalenie Wymienia – Artykuł Przeglądowy

Grażyna Sender
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Korwin-Kossakowska
  • Corresponding author
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adrianna Pawlik
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karima Galal Abdel Hameed / Jolanta Oprządek
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-20 | DOI: https://doi.org/10.2478/aoas-2013-0043

Abstract

Mastitis is one of the most important mammary gland diseases impacting lactating animals. Resistance to this disease could be improved by breeding. There are several selection methods for mastitis resistance. To improve the natural genetic resistance of cows in succeeding generations, current breeding programmes use somatic cell count and clinical mastitis cases as resistance traits. However, these methods of selection have met with limited success. This is partly due to the complex nature of the disease. The limited progress in improving udder health by conventional selection procedures requires applying information on molecular markers of mastitis susceptibility in marker-assisted selection schemes. Mastitis is under polygenic control, so there are many genes that control this trait in many loci. This review briefly describes genome-wide association studies which have been carried out to identify quantitative trait loci associated with mastitis resistance in dairy cattle worldwide. It also characterizes the candidate gene approach focus on identifying genes that are strong candidates for the mastitis resistance trait. In the conclusion of the paper we focus our attention on future research which should be conducted in the field of the resistance to mastitis.

Streszczenie

Zapalenie wymienia (mastitis) jest jedną z najważniejszych chorób bydła mlecznego. Poprawa odporności na tę chorobę jest możliwa dzięki wykorzystaniu metod hodowlanych. Aby poprawić odporność krów mlecznych na mastitis, dopuszczalne jest wykorzystanie kilku metod selekcyjnych, które zostały omówione pokrótce w niniejszej pracy. Programy hodowlane, obecnie stosowane na świecie, wykorzystują jako kryterium selekcyjne zwierząt odpornych na mastitis, liczbę komórek somatycznych w mleku krów lub częstość występowania przypadków klinicznych. Programy te jednak tylko częściowo przyczyniły się do poprawy odporności krów na zapalenie wymienia. Jednym z powodów małej ich efektywności jest złożona etiologia tej choroby. Aby zwiększyć efektywność programów hodowlanych w odniesieniu do odporności na mastitis, w ostatnich latach podjęto badania nad markerami genetycznymi tej choroby i ich wykorzystaniem w selekcji wspomaganej markerami. Na zapalenie wymienia wpływa wiele genów. W niniejszej pracy dokonano przeglądu badań nad poszukiwaniem markerów związanych z odpornością na mastitis i genów do niej kandydujących. W podsumowaniu wskazano kierunki dalszych badań.

Keywords: dairy cattle; mastitis; genetic markers

  • Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P. , Da Y., Van Ra - den P.M., Ron M., Weller J.I., Lewin H.A. (2004). Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci., 87: 468-475.Google Scholar

  • Baes C., Mayer M., Tetens J., Liu Z., Reinhardt F., Thaller G., Reinsch N. (2010). Refined mapping ofa QTLfor somatic cell score on BTA27 in the German Holstein using combined linkage and linkage disequilibrium analysis. Can. J. Anim. Sci., 90: 169-178.Google Scholar

  • Bannerman D.D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87: 10-25.Google Scholar

  • Beecher C., Daly M., Childs S., Berry D.P., Magee D.A., Mc Carthy T.V., Giblin L. (2010). Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle. BMC Genet., 11, doi:10.1186/1471-2156-11-99CrossrefPubMedGoogle Scholar

  • Cole J.B., Van Raden P.M., O ’ Connell J.R., Van Tassell C.P., Sonstegard T.S., Schnabel R.D., Taylor J.F., Wiggans G.R. (2009). Distribution and location of genetic effects for dairy traits. J. Dairy Sci., 92: 2931-2946.Google Scholar

  • Fleischer P., Metzner M., Beyerbach M., Hoedemaker M., Klee W. (2001). The relationship between milk yield and the incidence of some diseases in dairy cows. J. Dairy Sci., 84: 2025-2035.Google Scholar

  • Galal Abdel Hameed K., Sender G., Korwin - Kossakowska A. (2008). An association of the Bo LAalleles DRB3.2*16 and DRB3.2*23 with occurrence of mastitis caused by different bacterial species in two herds of dairy cows. Anim. Sci. Pap. Rep., 26: 37-48.Google Scholar

  • Goertz I., Baes C., Weimann C., Reinsch N., Erhardt G. (2009). Association between single nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle. J. Dairy Sci., 92: 4018-4022.Google Scholar

  • Hayes B.J., Pryce J., Chamberlain A.J., Bowman P.J., Goddard M.E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. Plos Genetics, 6 (9), doi:10.1371/journal. pgen.1001139PubMedCrossrefGoogle Scholar

  • Heringstad B., Rekaya R., Gianola D., Klemetsdal G., Weigel KA. (2003). Genetic change for clinical mastitis in Norwegian cattle:athreshold model analysis. J. Dairy Sci., 86: 369-375.CrossrefGoogle Scholar

  • Heringstad B., Gianola D., Chang Y.M., Odegard J., Klemetsdal G. (2006). Genetic associations between clinical mastitis and somatic cell score in early first-lactation cows. J. Dairy Sci., 89: 2236-2244.CrossrefGoogle Scholar

  • Heringstad B., Klemetsdal G., Steine T. (2007). Selection responses for disease resistance in two selection experiments with Norwegian red cows. J. Dairy Sci., 90: 2419-2426.CrossrefGoogle Scholar

  • Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Da Y., Wig- gans G.R., Van Raden P.M., Lewin H.A. (1999). Agenome scan for QTLinfluencing milk production and health traits in dairy cattle. Physiol. Genomics, 1: 165-175.Google Scholar

  • Holmberg M., Andersson- Eklund L. (2004). Quantitative trait loci affecting health traits in Swedish dairy cattle. J. Dairy Sci., 87: 2653-2659.CrossrefGoogle Scholar

  • Hu Z-L., Park C.A., Fritz E.R., Reecy J.M. (2010). QTLdb:acomprehensive database tool building bridges between genotypes and phenotypes. Proc. 9th World Congress on Genetics Applied to Livestock Production, 1-6.08.2010, Leipzig, Germany.Google Scholar

  • Ingham A., Menzies M. (2006). Identification and expression of Toll-like receptors 1-10 in selected bovine and ovine tissues. Vet. Immunol. Immunop., 109: 23-30.Google Scholar

  • Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. (2004). Quantitative trait loci mapping in dairy cattle: review and metaanalysis. Genet. Sel. Evol., 36: 163-190.Google Scholar

  • Khatkar M.S., Thomson P.C., Tammen I., Raadsma H.W. (2005). Combined QTLmap of dairy cattle traits. University of Sydney. http://www.vetsci.usyd.edu.au/reprogen/QTL Google Scholar

  • Klungland H., Sabry A., Heringstad B., Olsen H.G., Gomez- Raya L., Vage D.I., Olsaker I., Odegard J., Klemetsdal G., Schulman N., Vilkki J., Ruane J., Aasland M., Ronninge K., Lien S. (2001). Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm. Genome, 12: 837-842. Google Scholar

  • Kuhn C., Bennewitz J., Reinsch N., Xu N., Thomsen H., Looft C., Brock- mann G.A., Schwerin M., Weimann C., Hiendleder S., Erhardt G., Medjugo- rac I., Forster M., Brenig B., Reinhardt F., Reents R., Russ I., Averdunk G., Blumel J., Kalm E. (2003). Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J. Dairy Sci., 86: 360-368.CrossrefGoogle Scholar

  • Lahouassa H., Rainard P., Caraty A., Riollet C. (2008). Identification and characterization ofanew interleukin-8 receptor in bovine species. Mol. Immunol., 45: 1153-1164.PubMedGoogle Scholar

  • Lewandowska- Sabat A.M., Gunther J., Seyfert H.M., Olsaker I. (2012). Combining quantitative trait loci and heterogeneous microarray data analyses reveals putative candidate pathways affecting mastitis in cattle. Anim. Genet., 43: 793-799.Google Scholar

  • Leyva- Baca I., Schenkel F., Martin J., Karrow N.A. (2008). Polymorphisms in the 5′ upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada. J. Dairy Sci., 91: 407-417.Google Scholar

  • Liu Y.X., Xu C.H., Gao T.Y., Sun Y. (2012). Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet. Mol. Res., 11: 651-660.Google Scholar

  • Lund M.S., Sahana G., Andersson- Eklund L., Hastings N., Fernandez A., Schulman N., Thomsen B., Viitala S., Williams J.L., Sabry A., Viinalass H., Vilkki J. (2007). Joint analysis of quantitative trait loci for clinical mastitis and somatic cell score on five chromosomes in three Nordic dairy cattle breeds. J. Dairy Sci., 90: 5282-5290.CrossrefGoogle Scholar

  • Lund M.S., Guldbrandtsen B., Buitenhuis A.J., Thomsen B., Bendixen C. (2008). Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J. Dairy Sci., 91: 4028-4036.Google Scholar

  • Mai M.D., Rychtarova J., Zink V., Lassen J., Guldbrandtsen B. (2010). Quantitative trait loci for milk production and functional traits in two Danish cattle breeds J. Anim. Breed. Genet., 127: 469-473.CrossrefGoogle Scholar

  • Meredith B.K., Kearney F.J., Finlay E.K., Bradley D.G., Fahey A.G., Berry D.P., Lynn D.J. (2012). Genome-wide associations for milk production and somatic cell score in Holstein- Friesian cattle in Ireland. BMC Genetics, 13, p. 21.CrossrefPubMedGoogle Scholar

  • Minozzi G., Nicolazzi E.L., Strozzi F., Stella A., Negrini R., Ajmone - Marsan P., Williams J.L. (2011). Genome wide scan for somatic cell counts in Holstein bulls. BMC Proceedings, 5 (Suppl 4): S17.CrossrefPubMedGoogle Scholar

  • Mitchell G.B., Albright B.N., Casewell J.L. (2003). Effect of interleukin n-8 and granulocyte colony stimulating factor on priming and activation of bovine neutrophils. Infect. Immun., 71: 1643-1649.CrossrefGoogle Scholar

  • Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003). Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J. Dairy Sci., 86: 2684-2695.CrossrefGoogle Scholar

  • Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832-851.Google Scholar

  • Oprządek J., Urtnowski P., Sender G., Pawlik A., Łukaszewicz M. (2012). Frequency of Bo LA-DRB3 alleles in Polish Holstein-Friesian cattle. Anim. Sci. Pap. Rep., 30: 91-101.Google Scholar

  • Opsal M.A., Hayes B., Berget I., Lien S., Vage D.I. (2006). Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene, 384: 45-50.Google Scholar

  • Pant S.D., Schenkel F.S., Leyva- Baca I., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8, doi:10.1186/1471-2164-8-421CrossrefGoogle Scholar

  • Pawlik A., Sender G., Korwin - Kossakowska A. (2009). Bovine lactoferrin gene polymorphism and expression in relation to mastitis resistance -areview. Anim. Sci. Pap. Rep., 27: 263-271.Google Scholar

  • Pighetti G.M., Elliott A.A. (2011). Gene polymorphisms: The key for marker assisted selection and unraveling core regulatory pathways for mastitis resistance. J. Mammary Gland Biol. Neoplasia, 16: 421-432.CrossrefGoogle Scholar

  • Quirion M.R., Gregory G.D., Umetsu S.E., Winandy S., Brown M.A (2009). Cutting Edge: Ikaros isaregulator of Th2 cell differentiation. J. Immunol., 182: 741-745. Google Scholar

  • Ron M., Feldmesser E., Golik M., Tager- Cohen I., Kliger D., Reiss V., Domo - chovsky R., Alus O., Seroussi E., Ezra E., Weller J.I. (2004). Acomplete genome scan of the Israeli Holstein population for quantitative trait loci byadaughter design. J. Dairy Sci., 87: 476-490.CrossrefGoogle Scholar

  • Rupp R., Boichard D. (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res., 34: 671-688.Google Scholar

  • Sahana G., Lund M.S., Andersson- Eklund L., Hastings N., Fernandez A., Iso- Touru T., Thomsen B., Viitala S., Sorensen P., Williams J.L., Vilkki J. (2008). Fine-mapping QTLfor mastitis resistance on BTA9 in three Nordic red cattle breeds. Anim. Genet., 39: 354-362.Google Scholar

  • Schrooten C., Bink M.C.A.M., Bovenhuis H. (2004). Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J. Dairy Sci., 87: 3550-3560.CrossrefGoogle Scholar

  • Schulman N.F., Viitala S.M.,de Koning D.J., Virta J., Maki - Tanila A.,Vilkki J.H. (2004). Quantitative trait loci for health traits in Finnish Ayrshire cattle. J. Dairy Sci., 87: 443-449.CrossrefGoogle Scholar

  • Schulman N.F., Sahana G., Iso- Touru T., Lund M.S., Andersson- Eklund L., Vii- tala S.M., Vaerv S., Viinalass H., Vilkki J.H. (2009). Fine mapping of quantitative trait loci for mastitis resistance on bovine chromosome 11. Anim. Genet., 40: 509-515.Google Scholar

  • Sender G., Galal Abdel Hameid K., Korwin - Kossakowska A., Sobczyńska M. (2008). Association of the Bo LA-DRB3 alleles with estimated breeding value for somatic cell count in Polish dairy cattle. Arch. Tierzucht., 51: 111-119.Google Scholar

  • Sender G., Pawlik A., Korwin - Kossakowska A., Galal Abdel Hameid K., Sobczyńska M., Oprzadek J., Prusak B. (2010). Association of the bovine lactoferrin polymorphism with occurrence of mastitis. Milchwissenschaft, 65 (3): 242-245.Google Scholar

  • Sharma B.S., Leyva I., Schenkel F., Karrow N.A. (2006). Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls. J. Dairy Sci., 89: 3626-3635.Google Scholar

  • Sodeland M., Kent M.P., Olsen H.G., Opsal M.A., Svendsen M., Sehested E., Hayes B.J., Lien S. (2011). Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Anim. Genet., 42: 457-465.Google Scholar

  • Sorensen L.P., Guldbrandtsen B., Thomasen J.R., Lund M.S. (2008). Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in Danish Holstein cattle. J. Dairy Sci., 91: 2493-2500.Google Scholar

  • Starkenburg R.J., Hansen L.B., Kehrli M.E., Chester- Jones H. (1997). Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. J. Dairy Sci., 80: 3411-3419.CrossrefGoogle Scholar

  • Tal- Stein R., Fontanesi L., Dolezal M., Scotti E., Bagnato A., Russo V., Canave - si F., Friedmann A., Soller M., Lipkin E. (2010). Agenome scan for quantitative trait loci affecting milk somatic cell score in Israeli and Italian Holstein cows by means of selective DNA pooling with single- and multiple-marker mapping. J. Dairy Sci., 93: 4913-4927.Google Scholar

  • Uthaisangsook S., Day N.K., Bahna S.L., Good R.A., Haragucki S. (2002). Innate immunity and its role against infections. Ann. Allerg. Asthma Im., 88: 253-264.CrossrefGoogle Scholar

  • Wang X., Xu S., Xue G., Ren H., Chen J. (2007). Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle J. Genet. Genomics, 34: 406-412.Google Scholar

  • Wang C., Liu M., Li Q., Ju Z., Huang J., Li J. (2011). Three novel single nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet. Immunol. Immunop., 139: 229-236.Google Scholar

  • Wang X., Ju Z., Huang J., Hou M., Zhou L., Qi C., Zhang Y., Gao Q., Pan Q., Li G., Zhong J., Wang C. (2012). The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-Clevels and complement activity. Vet. Immunol. Immunop., 148: 311-319.Google Scholar

  • Waters S.M., Mc Cabe M.S., Howard D.J., Giblin L., Magee D.A., Mac Hugh D. E., Berry D.P. (2010). Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim Genet., 42: 39-49.Google Scholar

  • Wiggans G.R., Van Raden P.M., Cooper T.A. (2011). The genomic evaluation system in the United States: past, present, future. J. Dairy Sci., 94: 3202-3211. CrossrefGoogle Scholar

  • Wijga S., Bastiaansen J.W.M., Wall E., Strandberg E.,de Haas Y., Giblin L., Bovenhuis H. (2012). Genomic associations with somatic cell score in first-lactation Holstein cows. J. Dairy Sci., 95: 899-908.CrossrefGoogle Scholar

  • Yang Y., Li Q., Ju Z., Huang J., Zhou L., Li R., Li J., Shib F., Zhonga J., Wang C. (2012). Three novel single-nucleotide polymorphisms of complement component 4 gene (C4A) in Chinese Holstein cattle and their associations with milk performance traits and CH50. Vet. Immunol. Immunop., 145: 223-232.Google Scholar

  • Youngerman S.M., Saxton A.M., Oliver S.P., Pighetti G.M. (2004). Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J. Dairy Sci., 87: 2442-2448.Google Scholar

  • Zhang C.L., Wang Y., Fang H.C.X., Gu C. (2012). The chemokine receptor 1 gene polymorphism and its association with Somatic Cell Score and milk production traits in dairy cattle. Anim. Sci. Pap. Rep., 30 (1): 25-33.Google Scholar

  • Zwald N.R., Weigel K.A., Chang Y.M., Welper R.D., Clay J.S. (2006). Genetic analysis of clinical mastitis data from on-farm management software using threshold models. J. Dairy Sci., 89 (1): 330-336.CrossrefGoogle Scholar

About the article

Published Online: 2013-10-20

Published in Print: 2013-09-01


Citation Information: Annals of Animal Science, Volume 13, Issue 4, Pages 663–673, ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/aoas-2013-0043.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ewa M Kosciuczuk, Paweł Lisowski, Justyna Jarczak, Alicja Majewska, Magdalena Rzewuska, Lech Zwierzchowski, and Emilia Bagnicka
BMC Veterinary Research, 2017, Volume 13, Number 1
[2]
Chinmoy Mishra, Subodh Kumar, and H.M. Yathish
Gene Reports, 2017, Volume 6, Page 32
[3]
Marco Tolone, Salvatore Mastrangelo, Rosalia Di Gerlando, Anna M. Sutera, Giuseppina Monteleone, Maria T. Sardina, and Baldassare Portolano
Small Ruminant Research, 2016, Volume 136, Page 18
[5]
Ewa M Kościuczuk, Paweł Lisowski, Justyna Jarczak, Józef Krzyżewski, Lech Zwierzchowski, and Emilia Bagnicka
BMC Veterinary Research, 2014, Volume 10, Number 1
[6]
Maria G Strillacci, Erika Frigo, Fausta Schiavini, Antonia B Samoré, Fabiola Canavesi, Mario Vevey, Maria C Cozzi, Morris Soller, Ehud Lipkin, and Alessandro Bagnato
BMC Genetics, 2014, Volume 15, Number 1

Comments (0)

Please log in or register to comment.
Log in