Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
See all formats and pricing
More options …

Effect of sow prolificacy and nutrition on preand postnatal growth of progeny – a review

Anna Rekiel
  • Corresponding author
  • Department of Pig Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Justyna Więcek
  • Department of Pig Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martyna Batorska
  • Department of Pig Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Józef Kulisiewicz
  • Department of Pig Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/aoas-2013-0060


Weakened growth and development of embryos as well as of fetuses or their organs (IUGR) show a relationship with increasing sow fertility. When aiming to increase birth weight in piglets and reduce within-litter variation in piglet body weight, efforts should be made to maintain a favourable maternal environment (uterus-placenta-embryo). Intrauterine undernutrition can be limited through the hormonal and/or nutritional treatment of pregnant sows. This has an effect on prenatal myogenesis, resulting in better development of skeletal muscles, higher birth weight of piglets, and progression in postnatal growth rate.

Keywords : sows; prolificacy; feeding; IUGR


  • Ashton C., Bayol S., Mcentee G., Maltby V., Stickland N. (2005). Prenatal influences on skeletal muscle development in mammals, birds and fish. Arch. Tierz., Dummerstorf, 48: 4-10.Google Scholar

  • Beaulieu A.D., Aalhus J.L., Williams N.H., Patience J.F. (2010). Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition and eating quality of pork. J. Anim. Sci., 88: 2767-2778.Google Scholar

  • Bee G. (2004). Effect of early gestation feeding, birth weight, and gender of progeny on muscle fiber characteristics of pigs at slaughter. J. Anim. Sci., 82: 826-836.Google Scholar

  • Bee G. (2007). Birth weight of litters as source of variation in postnatal growth, and carcass and meat quality. Adv. Pork Prod., 18: 191-195.Google Scholar

  • Bérard J., Kreuzer M., Bee G. (2008). Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis. J. Anim. Sci., 86: 2357-2368.Web of ScienceGoogle Scholar

  • Bérard J., Pardo C.E., Bethaz S., Kreuzer M., Bee G. (2010). Intrauterine crowding decreases average birth weight and affects muscle fiber hyperplasia in piglets. J. Anim. Sci., 88: 3242-3250.Web of ScienceGoogle Scholar

  • Boulot S., Quesnel H., Quiniou N. (2010). Management of high prolificacy in French herds: can we alleviate side effects on piglet survival? Pig Industry, Engormix.Google Scholar

  • Brown L.D., Green A.S., Limesand S.W., Rozance P.J. (2011). Maternal amino acid supplementation for intrauterine growth restriction. Front. Biosci. (Schol Ed), 1, 3: 428-444.Google Scholar

  • Brüssow K.P., Wähner M., Jaśkowski J.M. (2011). Biological limit of fecundity in sows - do they exist? EJPAU, 14, p. 3.Google Scholar

  • Campos P.H., Silva B.A.N., Donzele J.L., Oliveira R.F.M., Knol E.F. (2012). Effects of sow nutrition during gestation on within-litter birth weight variation:areview. Animal, 6: 797-806.Web of ScienceGoogle Scholar

  • Canario L., Lundgren H., Haandlykken M., Rydhamer L. (2010). Genetics of growth in piglets and the association with homogeneity of body weight within litters. J. Anim. Sci., 88: 1240-1247.Web of ScienceGoogle Scholar

  • Cerisuelo A., Baucells M.D., Gasa J., Coma J., Carrion D., Chapinal N., Sala R. (2009). Increased sow nutrition during midgestation affects muscle fiber development and meat quality, with no consequences on growth performance. J. Anim. Sci., 87: 729-739.Google Scholar

  • Chen Z.Y., Dziuk P.J. (1993). Influence of initial length of uterus per embryo and gestation stage on prenatal survival, development, and sex ratio in the pig. J. Anim. Sci., 71: 1895-1901.Google Scholar

  • Chmurzyńska A. (2010). Fetal programming - link between early nutrition, DNAmethylation and complex diseases. Nutr. Rev., 68 (2): 87-98.Web of ScienceGoogle Scholar

  • Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P., Nathanielsz P.W. (2010). Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci., 88: E51-E60.Web of ScienceGoogle Scholar

  • Dwyer C.M., Fletcher J.M., Stickland N.C. (1993). Muscle cellularity and postnatal growth in the pigs. J. Anim. Sci., 71: 3339-3343.Google Scholar

  • Dwyer C.M., Stickland N.C., Fletcher J.M. (1994). The influence of maternal nutrition on muscle fiber number development in the porcine fetus and subsequent postnatal growth. J. Anim. Sci., 72: 911-917.Google Scholar

  • Foxcroft G.R., Dixon W.T., Novak S., Putman C.T., Town S.C., Vinsky M.D. (2006). The biological basis for prenatal programming of postnatal performance in pigs. J. Anim. Sci., 84: E105-E112.Google Scholar

  • Funston R.N., Larson D.M., Vonnahme K.A. (2010). Effects of maternal nutrition on conceptus growth and offspring performance: implications for beef cattle production. J. Anim. Sci., 88: E205-E215.Google Scholar

  • Gatford K.L., Ekert J.E., Blackmore K., De Blasio M.J., Boyce J.M., Owens J.A., Campbell R.G., Owens P.C. (2003). Variable maternal nutrition and growth hormone treatment in the second quarter of pregnancy in pigs alter semitendinosus muscle in adolescent progeny. Br. J. Nutr., 90: 283-293.Google Scholar

  • Gatford K.L., Smits R.J., Collins C.L., Argent C., De Blasio M.J., Roberts C.T., Nottle M.B., Kind K.L., Owens J.A. (2010). Maternal responses to daily maternal porcine somatotropin injections during early-mid pregnancy or early-late pregnancy in sows and gilts. J. Anim. Sci., 88: 1365-1378.Web of ScienceGoogle Scholar

  • Gondret F., Lefaucheur L., Louveau I., Lebret B. (2005). The long-term influences of birth weight on muscle characteristics and eating meat quality in pigs reared and fed during fattening. Arch. Tierz., 48: 68-73.Google Scholar

  • Gondret F., Lefaucheur L., Juin H., Louveau I., Lebret B. (2006). Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs. J. Anim. Sci., 84: 93-103.Google Scholar

  • Herpin P., Damon M., Le Dividich J. (2002). Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci., 78: 25-45.Google Scholar

  • Hill R.A., Connor E.E., Poulos S.P., Welsh T.H., Gabler N.K. (2010). Growth and development symposium: fetal programming in animal production. J. Anim. Sci., 88 (E Suppl.): 38-39.Web of ScienceGoogle Scholar

  • Ishida M., Hiramatsu Y., Masuyama H., Mizutani Y., Kudo T. (2002). Inhibition of placental ornithine decarboxylase by DL-[alpha]-difluoro-methyl ornithine causes fetal growth restriction in rat. Life Sci., 70: 1395-1405.PubMedGoogle Scholar

  • Johnson R.K., Nielsen M.K., Casey D.S. (1999). Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. J. Anim. Sci., 77: 541-557.Google Scholar

  • Koczanowski J., Kopyra M., Orzechowska B., Tyra M., Żak G., Nowicki J. (2006). Effect of feeding level after mating on embryo survival in purebred and crossbred gilts. Ann. Anim. Sci., Suppl., 2/2: 357-361.Google Scholar

  • Lawlor P.G., Lynch P.B., Caffrey P.J., O ' Doherty J.V. (2002). Effect of pre- and postweaning management on subsequent pig performance to slaughter and carcass quality. Anim. Sci., 75: 245-256. Google Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-03-01

Citation Information: Annals of Animal Science, Volume 14, Issue 1, Pages 3–15, ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/aoas-2013-0060.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiangyang Miao, Qingmiao Luo, Huijing Zhao, and Xiaoyu Qin
Frontiers in Physiology, 2017, Volume 8
Johannes Gulmann Madsen, Camilo Pardo, Michael Kreuzer, and Giuseppe Bee
Journal of Animal Science and Biotechnology, 2017, Volume 8, Number 1
Yun Ji, Zhenlong Wu, Zhaolai Dai, Xiaolong Wang, Ju Li, Binggen Wang, and Guoyao Wu
Journal of Animal Science and Biotechnology, 2017, Volume 8, Number 1
Agnese Balzani, Heather J. Cordell, and Sandra A. Edwards
Theriogenology, 2016, Volume 86, Number 8, Page 1913

Comments (0)

Please log in or register to comment.
Log in