Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
See all formats and pricing
More options …

Nutritional and immunomodulatory function of methionine in poultry diets – a review

Jan Jankowski
  • Corresponding author
  • Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Kubińska
  • Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zenon Zduńczyk
  • Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/aoas-2013-0081


Methionine (Met) plays many important metabolic functions in humans and animals, and therefore may be classified as a functional amino acid (AA). Functional AAs are defined as those AAs that participate in and regulate key metabolic pathways to improve health, survival, growth, development, and reproduction of organisms. As the first-limiting AA in poultry diets, Met affects poultry production parameters such as body weight gains, feed conversion ratio and carcass quality. The results of many experiments on chickens fed diets with different levels of Met (from 0.3 to 1.2% in the starter period, and from 0.3 to 0.9% in the grower period) indicate that commercial broiler chickens do not require more than 0.50 and 0.38% Met in starter and grower diets, respectively, for optimum growth and feed efficiency, whereas higher inclusion rates of Met are needed to stimulate immune responses. The results of recent experiments on chickens are insufficient to define the optimal dietary levels of Met, which has been shown to exert immunostimulatory activity. A few experiments on layer hens have demonstrated that Met requirements for immune competence are higher than for optimum production, but the inclusion levels of this AA needed to stimulate the immune system of birds have not been defined. In the absence of such research, it remains unknown whether feeding growing turkeys diets supplemented with Met above NCR recommendations, as suggested by B.U.T. (British United Turkeys), stimulates the immune system of birds.

Keywords : methionine; metabolism; poultry nutrition; innate immunity; immune function


  • Baker D.H. (2009). Advances in protein-amino acid nutrition of poultry. Am. Aci., 37: 29-41.PubMedGoogle Scholar

  • Bouyeh M. (2012). Effect of excess lysine and methionine on immune system and performance of broilers. Ann. Biol. Res., 3: 3218-3224.Google Scholar

  • Brosnan J.T., Brosnan M.E. (2006). The sulfur-containing amino acids: an overview. J. Nutr., 136: 1636-1640.Google Scholar

  • Bunchasak C. (2009). Role of dietary methionine in poultry production. J. Poultry Sci., 46: 169-179.CrossrefGoogle Scholar

  • BUT (2012). Commercial Performance Goals. http://www.aviagen.com/home.aspx?site Id=8Google Scholar

  • Calder P.C. (2006). Branched-chain amino acid and immunity. J. Nutr., 136: 288S-293S.Google Scholar

  • Chien X.X., Zafira - Stone S., Bagchi M., Bagchi D. (2006). Bioavailability, antioxidant and immune-enhancing properties of zinc methionine. Bio Factors, 27: 231-244.Google Scholar

  • Conde- Aguilera J.A., Cobo - Ortega C., Tesseraud S., Lessire M., Mercier Y., Milgen J. (2013). Changes in body composition in broilers byasulfur amino acid deficiency during growth. Poultry Sci., 92: 1266-1275.CrossrefGoogle Scholar

  • Crhanova M., Hradecka H., Faldynova M., Matulova M., Havlickova H., Sisak F., Rychlik I. (2011). Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enteritis serovar enteritidis infection. Infect. Immun., 79: 2755-2763.CrossrefPubMedGoogle Scholar

  • Dahiya J.P., Hoehler D., Van Kessel A.G., Drew M.D. (2007). Effect of different dietary methionine sources on intestinal microbial populations in broiler chickens. Poultry Sci., 86: 2358-2366.CrossrefGoogle Scholar

  • Deng K., Wong C.W., Nolan J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Anim. Feed Sci. Technol., 134: 66-76.CrossrefGoogle Scholar

  • Dunlevy L.P., Burren K.A., Mills K., Chitty L.S., Copp A.J., Greene N.D. (2006). Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res. A. Clin. Mol. Teratol., 76: 544-552.CrossrefGoogle Scholar

  • Elagib H.A.A., Elzubeir E.A. (2012). Humoral immune response of broiler chicks fed different levels of methionine and energy under heat stress. Int. J. Poultry Sci., 11: 400-404.CrossrefGoogle Scholar

  • Emmerson D.A. (1997). Commercial approaches to genetic selection for growth and feed conversion in domestic poultry. Poultry Sci., 76: 1121-1125.CrossrefGoogle Scholar

  • Fang Y.Z., Yang S., Wu G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18: 872-879.CrossrefPubMedGoogle Scholar

  • Fang Z., Yao K., Zhang X., Zhao S., Sun Z., Tian G., Yu B., Lin Y., Zhu B., Jia G., Zhang K., Chen D., Wu D. (2010). Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Am. Aci., 39: 633-640.PubMedGoogle Scholar

  • Gf E (1999). Empfehlungen zur Energie-und Nährstoffversorgung der Legehennen und Masthühner (Broiler). DLG Verlag.Google Scholar

  • Gf E (2004). Empfehlungen zur Energie-und Nährstoffversorgung der Mastputen. Proc. Society of Nutrition Physiology, DLG Verlag, 13: 199-233.Google Scholar

  • Grimble R.F. (2006). The effects of sulfur amino acid intake on immune function in humans. J. Nutr., 136: 1660-1665.Google Scholar

  • Grimble R.F., Grimble G.K. (1998). Immunonutrition: Role of sulfur amino acids, related amino acids, and polyamines. Nutr., 14: 605-610.CrossrefGoogle Scholar

  • Halsted C.H., Medici V. (2012). Aberrant hepatic methionine methabolism and gene methylation in the pathogenesis and treatment of alcoholic steatohepatitis. Int. J. Hep., 959746: 1-7.Google Scholar

  • Hashemi S.R., Davoodi H. (2012). Herbal plants as new immuno-stimulator in poultry industry:areview. Asian J. Anim. Vet. Advanc., 7: 104-116.Google Scholar

  • Havenstein G.B., Ferket P.R., Qureshi M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Sci., 82: 1500-1508.Google Scholar

  • Hoehler D., Lemme A., Roberson K., Turner K. (2005). Impact of methionine sources on performance in turkeys. J. Appl. Poult. Res., 14: 296-305.CrossrefGoogle Scholar

  • Hosseini S.A., Zaghari M., Lotfollahian H., Shivazad M., Moraviaj H. (2012). Reevaluation of methionine requirement based on performance and immune responses in broiler breeder hens. J. Poultry Sci., 49: 26-33.CrossrefGoogle Scholar

  • Ito K., Miwa N., Hagiwara K., Yano T., Shimizu- Saito K., Goseki N., Iwai T., Horikawa S. (1999). Regulation of methionine adenosyltransferase activity by the glutathione level in rat liver during ischemia-reperfusion. Surg. Today, 29: 1053-1058.PubMedCrossrefGoogle Scholar

  • Jankowski J., Zduńczyk Z., Juśkiewicz J., Kwieciński P. (2011 a). The effect of different dietary sodium levels on the growth performance of broiler chickens, gastrointestinal function, excreta moisture and tibia mineralization. J. Anim. Feed Sci., 20: 93-106.Google Scholar

  • Jankowski J., Lecewicz A., Chwastowska- Siwiecka I., Juśkiewicz J., Zduń -czyk Z. (2011 b). Performance, slaughter value and meat quality of turkeys fed diets with different content of sunflower meal. Arch. Geflügelk., 75 (2): 104-112.Google Scholar

  • Kidd M.T., Qureshi M.A., Ferket P.R., Thomas L.N. (1994). Dietary zinc-methionine enhances mononuclear-phagocytic function in young turkeys. Biol. Trace Eleme. Res., 42: 217-229.CrossrefGoogle Scholar

  • Kidd M.T. (2004). Nutritional modulation of immune function in broilers. Poultry Sci., 83: 650-657.CrossrefGoogle Scholar

  • Kim W.K., Froelich Jr C.A., Patterson P.H., Ricke S.C. (2006). The potential to reduce poultry nitrogen emissions with dietary methionine or methionine analogues supplementation. World’s Poultry Sci. J., 62: 338-353. Klasing K.C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Sci., 77: 1119-1125.CrossrefGoogle Scholar

  • Klasing K.C. (2004). The costs of immunity. Acta Zool. Sin., 50: 961-969.Google Scholar

  • Kogut M.H. (2009). Impact of nutrition on the innate immune response to infection in poultry. J. Appl. Poultry Res., 18: 111-124.CrossrefGoogle Scholar

  • Koreleski J., Świątkiewicz S. (2008). Effect of protein methionine levels inasemi-organic diet for dual-purpose type chickens on slaughter performance and nitrogen balance. J. Anim. Feed Sci., 17: 381-391.Google Scholar

  • Lara L.J., Rostagno M.H. (2013). Impact of heat stress on poultry production. Animals, 3: 356-369.CrossrefGoogle Scholar

  • Lemme A., Kozłowski K., Jankowski J., Petri A., Zduńczyk Z. (2005). Responses of 36 to 63 day old BUT Big 6 turkey toms to graded dietary methionine + cysteine levels. J. Anim. Feed Sci., 14: Suppl. 1: 139-142.Google Scholar

  • Leshchinsky T.V., Klasing K.C. (2001). Divergence of the inflammatory response in two types of chickens. Dev. Comp. Immunol., 25: 629-663.CrossrefGoogle Scholar

  • Li P., Yin Y-L., Li D., Kim S.W., Wu G. (2007). Amino acids and immune function. Brit. J. Nutr., 98: 237-252.CrossrefGoogle Scholar

  • Luo S., Levine R.L. (2009). Methionine in proteins defends against oxidative stress. FASEB J., 23: 464-472.PubMedGoogle Scholar

  • Maroufyan E., Kasim A., Hashemi S.R., Loh T.C., Bejo M.H., Davoodi H. (2010). The effect of methionine and threonine supplementations on immune response of broiler chickens challenged with infectious bursal disease. Am. J. Appl. Sci., 7: 44-50.Google Scholar

  • Martin - Venegas R., Geraert P.A., Ferrer R. (2006). Conversion of the methionine hydroxy analogue dl-2-hydroxy-(4-methylthio) butanoic acid to sulfur-containing amino acids in the chicken small intestine. Poultry Sci., 85: 1932-1938.Google Scholar

  • Mashaly M.M., Heetkamp M.J., Parmentier H.K., Schrama J.W. (2000). Influence of genetic selection for antibody production against sheep red blood cells on energy and metabolism in laying hens. Poultry Sci., 79: 519-524.CrossrefGoogle Scholar

  • Matsushita K., Takahashi K., Akiba Y. (2007). Effects of adequate or marginal excess of dietary methionine hydroxyl analogue free acid on growth performance, edible meat yields and inflammatory response in female broiler chickens. J. Poultry Sci., 44: 265-272.CrossrefGoogle Scholar

  • Meirelles H.T., Albuquerque R., Borgatti L.M.O., Souza L.W.O., Meister N.C., Lima F.R. (2003). Performance of broilers fed with different levels of methionine hydroxyl analogue and DL-methionine. Braz. J. Poultry Sci., 5: 69-74.Google Scholar

  • Mikulski D., Jankowski J., Zduńczyk Z., Wróblewska M., Sartowska K., Ma -jewska T. (2009). The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. J. Anim. Feed Sci., 18: 518-530.Google Scholar

  • Mikulski D., Jankowski J., Zduńczyk Z., Juśkiewicz J., Słominski B.A. (2012). The effect of different dietary levels of rapeseed meal on growth performance, carcass traits, and meat quality in turkeys. Poultry Sci., 91: 215-223.CrossrefGoogle Scholar

  • Mikulski D., Jankowski J., Juśkiewicz J., Mikulska M., Zduńczyk Z. (2014). The effect of different dietary levels of lupin seeds (L. angustifolius and L. luteus) on growth performance, GITdevelopment, and meat quality in growing-finishing turkeys. Anim. Feed Sci. Technol. (in press).Google Scholar

  • Mirzaaghatabar F., Saki A.A., Zamani P., Aliarabi H., Hemati Matin H.R. (2011). Effect of different levels of diet methionine and metabolisable energy on broiler performance and immune system. Food Agr. Immunol., pp. 1-11.Google Scholar

  • Moore D.T., Baker K., Firman J.D. (2004). Digestible sulfur amino acid requirement for male turkeys from six to twelve weeks of age. J. Appl. Poultry Res., 13: 155-162.CrossrefGoogle Scholar

  • Murillo M.G., Jensen L.S. (1976). Methionine requirement of developing turkeys 8-12 weeks of age. Poultry Sci., 55: 1414-1418.Google Scholar

  • NRC (National Research Council) (1994). Nutrient requirements of poultry. 9th revised edn. National Academic Press, Washington, DC.Google Scholar

  • Panda A.K., Rama Rao S.V., Raju M.V.L.N., Bhanja S.K. (2007). Relative performance and immune response in white leghorn layers fed liquid DL-methionine hydroxy analogue and DLmethionine. Asian-Aust. J. Anim. Sci., 6: 948-953. Google Scholar

  • Radoja S., Frey A.B., Vukmanovic S. (2006). T-cell receptor signaling events triggering granule exocytosis. Crit. Rev. Immunol., 26: 265-290.PubMedCrossrefGoogle Scholar

  • Rama Rao S.V., Praharaj N.K., Reddy M.R., Panda A.K. (2003). Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers. Br. Poultry Sci., 44: 104-112.CrossrefGoogle Scholar

  • Ross (2007). Broiler Nutrition Specification. http://www.en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross_308_Broiler Google Scholar

  • Rubin L.L., Canal C.W., Ribeiro A.L.M., Kessler A., Silva I., Trevizan L., Viola T., Raber M., Goncalves T.A., Kras R. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. Br. J. Poultry Sci., 9: 241-247.Google Scholar

  • Ruth M.R., Field C.J. (2013). The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol., 42, p. 27.CrossrefGoogle Scholar

  • Shini S., Li X., Bryden W.L. (2005). Methionine requirement and cell-mediated immune in chicks. Asia Pac. J. Clin. Nutr., 14 (Suppl) S123.Google Scholar

  • Sproul T.W., Cheng P.C., Dykstra M.L., Pierce S.K. (2000). Arole for MHCclass IIantigen processing in Bcell development. Int. Rev. Immunol., 19: 139-155.CrossrefGoogle Scholar

  • Swain B.K., Johri T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. Br. Poultry Sci., 41: 83-88.CrossrefGoogle Scholar

  • Swennen Q., Geraert P-A., Mercier Y., Everaert N., Stinckens A., Willemsen H., Li Y., Decuypere E., Buyse J. (2011). Effects of dietary protein content and 2-hydroxy-4- -methylthiobutanoic acid or DL-methionine supplementation on performance and oxidative status of broiler chickens. Brit. J. Nutr. 106: 1845-1854.Google Scholar

  • Takahashi K., Ohta N., Akiba Y. (1997). Influences of dietary methionine and cysteine on metabolic responses to immunological stress by Escherichia coli lipopolysaccharide injection, and mitogenic response in broiler chickens. Brit. J. Nutr., 78: 815-821.CrossrefGoogle Scholar

  • Troen A.M., Lutgens E., Smith D.E., Rosenberg I.H., Selhub J. (2003). The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. USA, 100: 15089-15094.CrossrefGoogle Scholar

  • Tsiagbe V.K., Cook M.E., Harper A.E., Sunde M.L. (1987). Efficacy of cysteine in replacing methionine in the immune responses of broiler chicks. Poultry Sci., 66: 1138-1146.CrossrefGoogle Scholar

  • Vedenov D., Pesti G.M. (2010). An economic analysis ofamethionine source comparison response model. Poultry Sci., 89: 2514-2520.CrossrefGoogle Scholar

  • Waldroup P.W., Adams P.W., Waldroup A.L. (1997). Evaluation of National Research Council amino acid recommendations for Large White turkeys. Poultry Sci., 76: 711-720.CrossrefGoogle Scholar

  • Wallwork J.C., Duerre J.A. (1985). Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J. Nutr., 115: 252-262.Google Scholar

  • Waterland R.A. (2006). Assessing the effects of high methionine intake on DNAmethylation. J. Nutr., 136: 1706-1710.Google Scholar

  • Webb R.E., Leslie Jr D.M., Lochmiller R.L., Masters R.E. (2003). Immune function and hematology of male cotton rats (Sigmodon hispidus) in response to food supplementation and methionine. Comp. Bioch. Ph. P. A., 136: 577-589.PubMedGoogle Scholar

  • Wershil B.K., Furuta G.T. (2008). Gastrointestinal mucosal immunity. J. Allergy Clin. Immunol., 121: 380-383.CrossrefGoogle Scholar

  • Willemsen H., Swennen Q., Everaert N., Geraert P.A., Mercier Y., Stinckens A., Decuypere E., Buyse J. (2011). Effects of dietary supplementation of methionine and its hydroxyl analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormonal levels, and the redox status of broiler chicken exposed to high temperatures. Poultry Sci., 90: 2311-2320.CrossrefGoogle Scholar

  • Wu G., Meininger C.J. (2002). Regulation of nitric oxide synthesis by dietary factors. Annu Rev. Nutr., 22: 61-86.PubMedCrossrefGoogle Scholar

  • Wu G. (2010). Functional amino acids in growth, reproduction, and health. Adv. Nutr., 1: 31-37.Google Scholar

  • Wu B., Cui H., Peng X., Fang J., Cui W., Liu X. (2012). Effect of methionine deficiency on the thymus and the subsets and proliferation on peripheral blood Tcell, and serum IL 2 in broilers. J. Int. Agri., 11: 1009-1019.Google Scholar

  • Wu G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45: 407-411. Wu B., Cui H., Peng X., Fang J., Cui W., Liu X. (2013). Pathology of bursa of Fabricius in methionine-deficient broiler chickens. Nutrients, 5: 877-886.CrossrefGoogle Scholar

  • Yasuhiko K., Sakamoto S., Kasahara T., Kusumoto K., Hida K., Suda K., Oza-wa K., Miura Y., Taka F. (1982). Methionine dependency of cell growth in normal and malignant hematopoietic cells. Cancer Res., 42: 3090-3092.Google Scholar

  • Zhang L.B., Guo Y.M. (2008). Effects on liquid DL-2-hydroxy-4-methylthio butanoic acid on growth performance and immune responses in broiler chickens. Poultry Sci., 87: 1370-1376. Google Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-03-01

Citation Information: Annals of Animal Science, Volume 14, Issue 1, Pages 17–32, ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/aoas-2013-0081.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Recep Önder Sürmeli, Alper Bayrakdar, Rahim Molaey, and Bariş Çalli
Waste and Biomass Valorization, 2017
Zenon Zduńczyk, Jan Jankowski, Magdalena Kubińska, Katarzyna Ognik, Anna Czech, and Jerzy Juśkiewicz
Archives of Animal Nutrition, 2017, Volume 71, Number 5, Page 347
Che Nor Adlia Enche Ady, Siong Meng Lim, Lay Kek Teh, Mohd Zaki Salleh, Ai-Vyrn Chin, Maw Pin Tan, Philip Jun Hua Poi, Shahrul Bahyah Kamaruzzaman, Abu Bakar Abdul Majeed, and Kalavathy Ramasamy
Journal of Neuroscience Research, 2017, Volume 95, Number 10, Page 2005
J. Jankowski, M. Kubińska, J. Juśkiewicz, A. Czech, K. Ognik, and Z. Zduńczyk
Poultry Science, 2016, Page pew383
Jan Jankowski, Magdalena Kubińska, Jerzy Juśkiewicz, Anna Czech, and Zenon Zduńczyk
Archives of Animal Nutrition, 2016, Volume 70, Number 2, Page 127
S. Swiatkiewicz, A. Arczewska-Wlosek, and D. Jozefiak
Livestock Science, 2015, Volume 180, Page 237
Thomas Willke
Applied Microbiology and Biotechnology, 2014, Volume 98, Number 24, Page 9893

Comments (0)

Please log in or register to comment.
Log in