Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

Effects of species-specific probiotic addition to milk replacer on calf health and performance during the first month of life

Alessandro Agazzi / Erica Tirloni / Simone Stella / Serena Maroccolo / Barbara Ripamonti / Carla Bersani / Jessica Michela Caputo / Vittorio Dell’Orto / Nicola Rota
  • Department of Veterinary Science and Public Health, University of Milan, Via Celoria 10, I-20133 Milan, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giovanni Savoini
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/aoas-2013-0089

Abstract

The aim of this study was to evaluate the effects of the administration of a species-specific probiotic (Lactobacillus animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and Bacillus coagulans SB117 in a 30:35:35 ratio, respectively; 1.8 × 1010 CFU/g of powder) on gut microbial balance, immune response and growth performance of Holstein female calves during the first month of life. Twenty-two calves were divided into two experimental groups from 2 to 28 days of life: control (C), fed with milk replacer and concentrate as a basal diet, and treatment (T), fed C diet plus 1 g/calf/day of probiotic powder for the first month of age. Faecal and blood samples were individually collected and analysed weekly. Individual faecal score was recorded daily and general health score was calculated at the end of the trial. Cell-mediated immune response was evaluated by skin test at 7 and 28 days of life. Milk replacer and concentrate intake were recorded daily, while body weight and biometrical parameters were recorded at 2, 8, 14, 21 and 28 days of life, thus average daily gain and feed conversion rate were calculated. During the first week of treatment, lower blood eosinophil percentage (0.05% vs. 0.22%; P≤0.01) was found in T group, while basophils were higher in T than C group at the end of the trial (0.21% vs. 0.16%; P≤0.05). Higher faecal lactic acid bacteria (LAB)/E. coli ratio on day 28 of life (3.73 log CFU/g vs. 2.02 log CFU/g; P≤0.05) and lower incidence of diarrhoea were found in the treated group (63.30% vs. 70.71%; P=0.05). Body weight (48.92 kg vs. 46.92 kg; P≤0.05), total concentrate intake (14.77 kg vs. 12.56 kg on dry matter basis; P≤0.05), and heart girth (81.16 cm vs. 78.49 cm; P≤0.05) were significantly higher in T group. The administration of the probiotic during the first month of life improved gut microbiota and increased the growth performance and some biometric parameters of calves.

Keywords : calf; health status; growth performance; intestinal microbial balance; species-specific probiotic

References

  • Abada E.A. (2008). Isolation and characterization of an antimicrobial compound from Bacillus coagulans. Anim. Cells Syst., 12: 41-46.CrossrefGoogle Scholar

  • Abe F.N., Ishibashi X., Shimamura S. (1995). Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci., 78: 2838-2846.CrossrefGoogle Scholar

  • Abu- Tarboush H.M., Al - Saiady M.Y., El - Din A.H.K. (1996). Evaluation of diet containing Lactobacilli on performance, fecal coliform, and Lactobacilli of young dairy calves. Anim. Feed Sci. Tech., 57: 39-49.Google Scholar

  • Agazzi A., Cattaneo D., Dell ’ Orto V., Moroni P., Bonizzi L., Pasotto D., Savoi-ni G. (2004). Effect of administration of fish oil on aspects of cell-mediated immune response in periparturient dairy goats. Small Ruminant Res., 55: 77-83.CrossrefGoogle Scholar

  • Agazzi A., Cigalino G., Mancin G., Savoini G., Dell ’ Orto V. (2007). Effects of dietary humates on growth and an aspect of cell-mediated immune response in newborn kids. Small Ruminant Res., 72: 242-245.CrossrefGoogle Scholar

  • Al - Saiady M.Y. (2010). Effect of probiotic bacteria on immunoglobulin Gconcentration and other blood components of newborn calves. J. Anim. Vet. Adv., 9: 604-609.Google Scholar

  • Bakhshi N., Ghorbani G.R., Rahmani H.R., Samie A. (2006). Effect of probiotic and milk feeding frequency on performance of dairy Holstein calves. Int. J. Dairy Sci., 1, 2: 113-119.Google Scholar

  • Bakr H.A., Said E.M., El - Tawab A., Hassan M.S. (2009). The impact of probiotic (Biovet) on some clinical, hematological and biochemical parameters in buffalo-calves. Vet. Med. J., 19: 1-10.Google Scholar

  • Chaucheyras- Durand F., Durand H. (2010). Probiotics in animal nutrition and health. Beneficial Microbes. Wageningen Academy Publishers, 1, 1: 3-9.Google Scholar

  • Corcionivoschi N., Drinceanu D., Pop I., Stack M., Stef D., Julean L. (2010). The effect of probiotics on animal health. Anim. Sci. Biotechnol., 43: 35-41.Google Scholar

  • Davis C.L., Drackley J.K. (2002). Desarrollo, nutricionymanejo del ternero joven. Intermedica, Buenos Aires.Google Scholar

  • Endo A., Futagawa - Endo Y., Dicks L.M.T. (2010). Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe, 16: 590-596.CrossrefPubMedGoogle Scholar

  • Fleige S., Prei Binger H.H.D., Meyer Pfaffl M.W. (2008). The immunomodulatory effect of lactulose on Enterococcus faecium fed preruminant calves. J. Anim. Sci., 87: 1731-1738.Google Scholar

  • Frizzo L.S., Soto L.P., Zbrun M.V., Bertozzi E., Sequeira G., Armesto R.R., Ros-mini M.R. (2010). Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Tech., 157: 159-167.Google Scholar

  • Frizzo L.S., Soto L.P., Bertozzi E., Zbrun M.V., Signorini M.L., Sequeira G., Ro -driguez R., Armesto R.R., Rosmini M.R. (2011 a). Intestinal populations of Lactobacilli and Coliforms after in vivo Salmonella dublin challenge and their relationship with microbial translocation in calves supplemented with lactic acid bacteria and lactose. Anim. Feed Sci. Tech., 170: 12-20.Google Scholar

  • Frizzo L.S., Zbrun M.V., Soto L.P., Signorini M.L. (2011 b). Effects of probiotics on growth performance in young calves: Ameta-analysis of randomized controlled trials. Anim. Feed Sci. Tech., 169: 147-156.CrossrefGoogle Scholar

  • Gaggìa F., Mattarelli P., Biavati B. (2010). Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol., 141: S15-S28.Google Scholar

  • Hasunuma T.K., Kawashima H., Nakayama H., Murakami T., Kanagawa H., Ishii T., Akiyama K., Yasuda K., Terada F., Kushibiki S. (2011). Effect of cellooligosaccharide or synbiotic feeding on growth performance, fecal condition and hormone concentrations in Holstein calves. Anim. Sci. J., 82: 543-548.CrossrefPubMedGoogle Scholar

  • Hoffman P.C. (1997). Optimum body size of Holstein replacement heifers. J. Anim. Sci., 75: 836-845.Google Scholar

  • Huang J.M., La Ragione R.M., Nunez A., Cutting S.M. (2008). Immunostimulatory activity of Bacillus spores. FEMS Immunol. Med. Mic., 53: 195-203.CrossrefGoogle Scholar

  • Hyronimus B., Le Marrec C., Urdaci M.C. (1998). Coagulin,abacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol., 85: 42-50.CrossrefGoogle Scholar

  • Kawakami S.I., Yamada Y., Nakanishi N., Cai Y. (2010). Feeding of lactic acid bacteria and yeast on growth and diarrhea of Holstein calves. J. Anim. Vet. Adv., 9: 1112-1114.Google Scholar

  • Kim M.K., Lee H.G., Park J.A., Kang S.K., Choi Y.J. (2011). Effect of feeding direct-fed microbial as an alternative to antibiotics for the prophylaxis of calf diarrhea in Holstein calves. Asian. Austral. J. Anim., 23: 643-649.CrossrefGoogle Scholar

  • Lacetera N., Bernabucci U., Ronchi B., Nardone A. (1999). The effects of injectable sodium selenite on immune function and milk production in Sardinian sheep receiving adequate dietary selenium. Vet. Res., 30: 363-370.PubMedGoogle Scholar

  • Lalles J.P., Bosi P., Smidt H., Stokes C.R. (2007). Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc., 66: 260-268.CrossrefPubMedGoogle Scholar

  • Le Jeune J.T., Wetzel A.N. (2007). Preharvest control of Escherichia coli O157 in cattle. J. Anim. Sci., 85: 73-80.Google Scholar

  • Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M.C. (2000). Biochemical and genetic characterization of coagulin,anew antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol., 66: 5213-5220.CrossrefGoogle Scholar

  • Lucas A.S., Swecker W.S., Lindsay D.S., Scaglia G., Elvinger F.C., Zajac A.M. (2007). The effect of weaning method on coccidial infections in beef calves. Vet. Parasitol., 145: 228-233.Google Scholar

  • Masucci F., Rosa G.D., Grasso F., Napolitano F., Esposito G., Francia A.D. (2011). Performance and immune response of buffalo calves supplemented with probiotic. Livest. Sci., 137: 24-30.Google Scholar

  • Matsumoto D., Takagi M., Hasunuma H., Fushimi Y., Ohtani M., Sato T., Oka-moto K., Shahada F., Tanaka T., Deguchi E. (2009). Effects of oral administration of difructose anhydride IIIon selected health and blood parameters of group-housed Japanese Black calves during the preweaning period. Asian-Aust. J. Anim., 22: 1640-1647. Google Scholar

  • Mead G.C., Impey C.S. (1986). Current progress in reducing Salmonella colonization of poultry by ‘competitive exclusion’. J. Appl. Bacteriol. Symp. (Suppl. 61): 67-75.Google Scholar

  • Mohri M., Sharifi K., Eidi S. (2007). Hematology and serum biochemistry of Holstein milk calves: age related changes and comparison with blood composition in adults. Res. Vet. Sci., 83: 30-39.CrossrefGoogle Scholar

  • Morrison S.J., Dawson S., Carson A.F. (2010). The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livest. Sci., 131: 292-296.Google Scholar

  • Nagashima K., Yasokawa D., Abe K., Nakagawa R., Kitamura T., Miura T., Koga -wa S. (2010). Effect ofa Lactobacillus species on incidence of diarrhea in calves and change of the microflora associated with growth. Biosci. Microflora., 29, 2: 97-110.Google Scholar

  • Riddell J.B., Gallegos A.J., Harmon D.L., Mc Leod K.R. (2010). Addition ofa Bacillus based probiotic to the diet of preruminant calves: influence on growth, health, and blood parameters. Int. J. Appl. Res. Vet. M., 8: 78-85.Google Scholar

  • Ripamonti B., Agazzi A., Baldi A., Balzaretti C., Bersani C., Pirani S., Rebu -cci R., Savoini G., Stella S., Stenico A., Domeneghini C. (2009). Administration of Bacillus coagulans in calves: recovery from fecal samples and evaluation of functional aspects of spores. Vet. Res. Commun., 33: 991-1001.CrossrefPubMedGoogle Scholar

  • Ripamonti B., Stella S. (2009). Probiotici sporigeni per l’alimentazione animale. Large Animal Review, 15: 7-12.Google Scholar

  • Ripamonti B., Agazzi A., Bersani C., De Dea P., Pecorini C., Pirani S., Rebu -cci R., Savoini G., Stella S., Stenico A., Tirloni E., Domeneghini C. (2011). Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts. Anaerobe., 17: 97-105.PubMedCrossrefGoogle Scholar

  • Ripamonti B., Tirloni E., Stella S., Bersani C., Agazzi A., Maroccolo S., Savoi-ni G. (2013). Effects ofaspecies-specific probiotic formulation on multiresistant Escherichia coli isolates from the gut of veal calves. Czech J. Anim. Sci., 5: 201-207.Google Scholar

  • Roodposhti P.M., Dabiri N. (2012). Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian. Austral. J. Anim., 25, 9: 1255-1261.CrossrefGoogle Scholar

  • Salim H.M., Kang H.K., Akter N., Kim D.W., Kim J.H., Kim M.J., Na J.C., Jong H.B., Choi H.C., Suh O.S., Kim W.K. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Sci., 92: 2084-2090.CrossrefGoogle Scholar

  • Savoini G., Agazzi A., Invernizzi G., Cattaneo D., Pinotti L., Baldi A. (2010). Polyunsaturated fatty acids and choline in dairy goats nutrition: Production and health benefits. Small Ruminant Res., 88: 135-144.CrossrefGoogle Scholar

  • Signorini M.L., Soto L.P., Zbrun M.V., Sequeira G.J., Rosmini M.R., Frizzo L.S. (2012). Impact of probiotic administration on the health and fecal microbiota of young calves:ameta-analysis of randomized controlled trials of lactic acid bacteria. Res. Vet. Sci., 93: 250-258.CrossrefGoogle Scholar

  • Soto L.P., Frizzo L.S., Bertozzi E., Avataneo E., Sequeira G.J., Rosmini M.R. (2010). Molecular microbial analysis of Lactobacillus strains isolated from the gut of calves for potential probiotic use. Vet. Med. Intern., pp. 1-8.Google Scholar

  • Stavric S., Gleeson T.M., Blanchfield B. (1991). Efficacy of undefined and defined bacterial treatment in competitive exclusion of Salmonella from chicks. In: Colonization Control of Human Bacteria Enteropathogens in Poultry. L. C. Blankenship, ed. Academic Press Inc., New York, NY, pp. 323-330.Google Scholar

  • Stella A.V., Paratte R., Valnegri L., Cigalino G., Soncini G., Chevaux E., Dell ’ Orto V., Savoini G. (2007). Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites and fecal flora in early lactating dairy goats. Small Ruminant Res., 67: 7-13.CrossrefGoogle Scholar

  • Sun P., Wang J.Q., Zhang H.T. (2010). Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J. Dairy Sci., 93: 5851-5855.CrossrefGoogle Scholar

  • Sun P., Wang J.Q., Zhang H.T. (2011). Effects of supplementation of Bacillus subtilis natto Na and N1 strains on rumen development in dairy calves. Anim. Feed Sci. Tech., 164: 154-160 Suzuki T., Yamasato K. (1994). Phylogeny of spore-forming lactic acid bacteria based on 16Sr RNAgene sequences. FEMS Microbiol. Lett., 115: 13-18.Google Scholar

  • Timmerman H.M., Koning C.J.M., Mulder L., Rombouts F.M., Beynen A.C. (2004). Monostrain, multistrain and multispecies probiotic -acomparison of functionality and efficacy. Int. J. Food Microbiol., 96: 219-233.CrossrefGoogle Scholar

  • Timmerman H.M., Mulder L., Everts H., Van Espen D.C., Vander Wal E., Klaas-sen G., Rouwers S.M.G., Hartemink R., Rombouts F.M., Beynen A.C. (2005). Health and growth of veal calves fed milk replacers with or without probiotics. J. Dairy Sci., 88: 2154-2165.CrossrefGoogle Scholar

  • Tsuruta T., Inoue R., Tsukahara T., Matsubara N., Hamasaki M., Ushida K. (2009). Acell preparation of Enterococcus fecalis strain EC-12 stimulates the luminal immunoglobulin Asecretion in juvenile calves. Anim. Sci. J., 80: 206-211.CrossrefGoogle Scholar

  • Zaaijer D., Noordhuizen J.P.T.M. (2003). Anovel scoring system for monitoring the relationship between nutritional efficiency and fertility in dairy cows. Irish Vet. J., 56: 145-151. Google Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-03-01


Citation Information: Annals of Animal Science, Volume 14, Issue 1, Pages 101–115, ISSN (Print) 1642-3402, DOI: https://doi.org/10.2478/aoas-2013-0089.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yuyong He, Chunxia Mao, Hong Wen, Zhiyu Chen, Tao Lai, Lingyu Li, Wei Lu, and Huadong Wu
Scientific Reports, 2017, Volume 7, Page 44553
[2]
M.A. Tunc and M.A. Yoruk
Asian Journal of Animal and Veterinary Advances, 2017, Volume 12, Number 3, Page 169
[3]
Sachin Kumar, Ashok Kumar Pattanaik, Shalini Sharma, Sunil Eknath Jadhav, Narayan Dutta, and Avneesh Kumar
Probiotics and Antimicrobial Proteins, 2017, Volume 9, Number 3, Page 262
[4]
Giulio Grandi, Laura Helen Kramer, Afro Quarantelli, and Federico Righi
Annals of Animal Science, 2016, Volume 16, Number 1

Comments (0)

Please log in or register to comment.
Log in