Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
See all formats and pricing
More options …

The Effect of a Coat Colour-Associated Genes Polymorphism on Animal Health – A Review

Krystyna M. Charon
  • Corresponding author
  • Department of Genetics and Animal Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna R. Lipka
  • Department of Genetics and Animal Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-03 | DOI: https://doi.org/10.2478/aoas-2014-0066


In recent years, the knowledge regarding molecular mechanisms of skin, hair and eye colouration in vertebrates has significantly broadened. It was found that some of the identified coat colour genes show negative pleiotropic effect. They are associated with hereditary diseases, often of a lethal character. Most of these diseases have their counterparts in humans. There is no effective treatment for these diseases, therefore animal models can help to identify the genetic background of diseases and to develop appropriate treatment. Much less is known on the association of coat colour with animal performance. However, there are reports on the effect of coat colour on body measurements and milk production in subtropical environments. The knowledge on pleiotropic effects of coat colour genes is important for breeders who should be aware of the consequences of their decision on mating animals with given genotype.

Keywords : coat colour; diseases; productivity; pleiotropic effects


  • Aasland M., Klungland H.,Lien S. (2000). Two polymorphisms in the bovine mast cell growth factor gene (MGF). Anim. Genet., 31, p. 345.Google Scholar

  • Albrecht E., Komolka K. Kuzinski J.. Maak S. (2012). Agouti revisited: transcript quantification of the ASIP gene in bovine tissues related to protein expression and localization. PLoS ONE, 7(4): e35282. doi: 10.1371.PubMedGoogle Scholar

  • Andersson L.S., Axels son J.Dubielzig RR, Lindgr en G., Ekes ten B. (2011). Mul- tiple congenital ocular anomalies in Icelandic horses. BMC Vet. Res., 7: 21-25.CrossrefGoogle Scholar

  • Anistoroaei R. Krogh A.K, Christensen K (2013). A frameshift mutation in the LYST gene is responsible for the Aleutian color and the associated Chediak-Higashi syndrome in Ameri- can mink. Anim. Genet.. 44: 178-183.CrossrefGoogle Scholar

  • Audo I., Kohl S., Leroy B.P.,Munier F.L., Guillonneau X., Mohand-Said S.,Bu- jakowska K. Nandrot E.F., Lorenz B., Preising M, Kellner U., Renner AB., Bernd A, Antonio A., Moskova-Doumanova V., Lancelot ME., Polos- chek C.M,Drumare I.,Defoort-DhellemmesS.,WissingerB.,LeveillardT., Hamel C.P., Schorderet D.F., De Baere E., Berger W, Jacobson S.G., Zren- ner E., Sahel J.A, Bhattacharya S.S., Zeitz C. (2009). TRMP1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J. Hum. Genet.. 85: 720-729.Google Scholar

  • Bauer T.R, Adler RL., Hickstein D.D. (2009). Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J., 50: 168-186.PubMedCrossrefGoogle Scholar

  • Becerril C.M, Wilcox C.J., Lawlor T.J., Wiggans G.R, Webb D.W. (1993). Effects of percentage of white coat color on Holstein production and reproduction in a subtropical climate. J. Dairy Sei, 76: 2286-2291.Google Scholar

  • Bellone RR (2010). Pleiotropic effects of pigmentation genes in horses. Anim. Genet., 41 (suppl. 2): 100-110.PubMedCrossrefGoogle Scholar

  • Bellone RR.. Brooks SA., Sandmeyer L., Murphy B.A, Forsyth G., Archer S., Bailey E.. Grahn B. (2008). Differential gene expression of TRPM1. the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equiis cabalhis). Genetics. 179: 1861-1870.PubMedGoogle Scholar

  • Benson KF.. Person RE., Li F.-Q., Williams K, Horwitz M (2004). Paradoxical ho- mozygous expression from heterozygotes and heterozygous expression from homozygotes as a con- sequence of transcriptional infidelity through a polyadenine tract in the .iPSBl gene responsible for canine cyclic neutropenia. Nucleid Acid Res., 32: 6327-6333.Google Scholar

  • Bowling A.T., R u v i n s k y A (2000). The Genetics of the Horse. CAB International. 527 pp.Google Scholar

  • Brooks S.A, Gabreski N., Miller D., Brisbin A, Brown H.E., Streeter C., Me- zey J..Cook D., Antczak D.F. (2010). Whole-genome SNP association in the horse: identifi- cation of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet.. 6(4): doi: 10.1371 /joumal.pgen. 1000909.CrossrefGoogle Scholar

  • Brunberg E., Andersson L., Cothran G., Sandberg K, Mikko S., Lindgren G. (2006). Amissense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet.. 7, p. 46.CrossrefGoogle Scholar

  • Cargill E.J., Fa mu la T.R, Strain G.M, Murphy KE. (2004). Heritability and segregation analysis of deafiiess in U.S. Dalmatians. Genetics. 166: 1385-1393.Google Scholar

  • Charlier C., Denys B.. Belanche J.L, Coppieters W., Grobet L., Mni M, Wo- mack J.Hanset R, Georges M. (1996). Microsatellite mapping of the bovine roan locus: a major determinant of White Heifer disease. Mamm. Genome. 7: 138-142.CrossrefGoogle Scholar

  • Cieslak J., Cholewinski G., M a c ko w s k i M. (2013). Genotyping of coat color genes (MC 1R ASIP, PMEL17 and MATP) polymorphism in cold-blooded horses bred in Poland reveals sporadic mistakes in phenotypic descriptions. Anim. Sei. Pap. Rep., 31: 159-164.Google Scholar

  • Clark L.A,Wahl J.M,Rees Ch.A,Murphy KE. (2006). Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. PNAS USA. 103: 1376-1381.CrossrefGoogle Scholar

  • Cooper MP.,Fretwell N.,Bailey S.J.,Lyons L.A (2006). White spotting in the domestic cat (Felis catiis) maps near KIT on feline chromosome Bl. Anim. Genet., 37: 163-165.CrossrefGoogle Scholar

  • Ducrest A.L., Keller L., Roulin A (2008). Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol., 23: 502-509.PubMedCrossrefGoogle Scholar

  • Durkin K, Coppieters W., Drögemüller C., Ahariz N., Cambisano N., Druet T., Fasquelle C., Haile A. Horin P., Huang L., Kamatani Y., Karim L., Lat- hrop M., Moser S., Oldenbroek K, Rieder S., Sartelet A., Sölkner J., Stäl- hammar H., Zelenika D., Zhang Z., Leeb T., Georges M, Charlier C. (2012). Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature. 482: 81-84.Google Scholar

  • Fanelli H.H. (2005). Coat colour dilution lethal (lavender foal syndrome): a tetany syndrome of Arabian foals. Equine Vet. Educ., 17: 260-263.Google Scholar

  • Fernandez L.P, Milne RL.. Pita G., Floristan U., Sendagorta E., Feito M., Avi- les A.. Martin-Gonzales M., Läzaro P. Benitez J., Ribas G. (2009). Pigmenta- tion-related genes and their implication in malignant melanoma susceptibility. Exp. Dermatol.. 18: 634-642.CrossrefGoogle Scholar

  • Fernandez-Rodrigues A, Estelle J.. Blin A., Munoz M, Crechet F., Deme- nais F., Vincent-Naulleau S., B ourneuf E. (2014). KIT and melanoma predisposition in pigs: sequence variants and association analysis. Anim. Genet.. 45: 445-448.CrossrefGoogle Scholar

  • Ferreira dos Santos Vi der a I., Magi na S. (2013). Mechanisms regulating melanogenesis. An. Bras. Dermatol.. 88: 76-83.Google Scholar

  • Finno C.J., Spier S.J., Va 1 b e r S.J. (2009). Equine diseases caused by known genetic mutations. Vet. J., 179: 336-347.Google Scholar

  • Flisikowska T., Kind A., Schnieke A (2014). Genetically modified pigs to model human diseases. J. AppL Genet.. 55: 53-64.CrossrefGoogle Scholar

  • FontanesiL., Scotti E.. Ru s s o V. (2010). Analysis of SNPs in the £77 gene of cattle with differ- ent coat colour patterns and perspectives to use these markers for breed traceability and authentica- tion of beef and dairy products. Italian J. Anim. Sei, 9: e42, doi: 10.4081/ijas.2010.e42.CrossrefGoogle Scholar

  • Guo H., Carlson J .A., SlominskiA (2012). Role of TRMP in melanocytes and melanoma. Exp. DermatoL. 21: 650-654.CrossrefGoogle Scholar

  • Haase B.Brooks SA., S chlumbaum A,Azor P.J.,Bailey E.,Alaeddine F.,Meike Me vis sen M. Burger D.. Poncet P. A, Rieder S., Leeb T. (2007). Allelic heterogene- ity at the equine KIT Locus in dominant white (W) horses. PLoS Genetics, 3: 2101-2108.Google Scholar

  • Haase B.Brooks S.A,Tozaki T.Burger D..Poncet PA.,Rieder S.,Hasegawa T., Penedo C.,Leeb T. (2009). Seven novel KIT mutations in horses with white coat colour pheno- types. Anim Genet., 40: 623-629.CrossrefGoogle Scholar

  • Hauswirth R. Haase B.. Blatter M., Brooks S.A., Burger D., Drögemüller C., Gerber V., Henkes D.,Janda J.,Rony J.,Magdesian KG., Mat thews J.M, Pon- cet PA, S vans son V., Tozaki T., Wilkinson-White L., Penedo M, Cecilia T., Riede S., Leeb T. (2012). Mutations in MI IF and PAX3 cause 'splashed white’1 and other white spotting phenotypes in horses. PLoS Genetics, 8: 1-10.Google Scholar

  • Hauswirth R, Jude R, Haase B . Bellone RR, Archer S., Holl H., Brooks S.A., Tozaki T.. Penedo M.C.T., R i e d e r S.,Leeb T. (2013). Novel variants in the KIT and PAX3 genes in horses with white-spotting coat colour phenotypes. Anim. Genet.. 44: 763-765.CrossrefGoogle Scholar

  • Hirobe T. (2011). How are proliferation and differentiation of melanocytes regulated? Pigm Cell Melanoma Res., 24: 462-478.CrossrefGoogle Scholar

  • Holl H.. Brooks S., Bailey E. (2010). De no\o mutation of KIT discovered as a result of a non- hereditary white coat color pattern. Anim Genet.. 41 (suppL 2): 196-198.CrossrefGoogle Scholar

  • Hudjashov G., Villems R, Kivisild T. (2013). Global patterns of diversity'and selection in human tyrosinase gene. PLOS One, 8(9), doi: 10.1371/joumal.pone.0074307.PubMedCrossrefGoogle Scholar

  • Isotani M., Tamura K, Yagihara H.. Hi kos aka M, Ono K, Washizu T., Bonko - b ar a M. (2006). Identification of a c-kit exon 8 internal tandem duplication in a feline mast cell tumor case and its favorable response to the tyrosine kinase inhibitor imatinib mesylate. Vet. Im- munol. Immunopathol.. 114: 168-172.CrossrefGoogle Scholar

  • Itakura E., Mi zu shim a N. (2013). Syntaxin 17: the autophagosomal SNARE. Autophagy. 9: 917-919.CrossrefGoogle Scholar

  • Johansson A., Pielberg G.. Andersson L.,Edfors-Lilja I. (2005). Polymorphismatthe porcine dominant white/KIT locus influence coat color and peripheral blood cell measures. Anim Genet., 36: 288-296.PubMedCrossrefGoogle Scholar

  • Jolly R.D., Wills J.L., Kenny J.E., Cahill J.I., Howe L. (2008). Coat-colour dilution and hypotrichosis in Hereford crossbred calves. New' Zeal. Vet. J., 56: 74-77. Google Scholar

  • Jung J.. Bohn G., Allroth A., Boztug K. Brandes G., Sandrock I., Schaffer AA, Rathinam C., Köllner L, Beger C., Schilke R, Welte K, Grimbacher B., Klein Ch. (2006). Identification of a homozygous deletion in the AP3B1 gene causing Hernia 11- sky-Pudlak syndrome, type 2. Blood, 108: 362-369.Google Scholar

  • Kaelin Ch.B.. B arsh G.S. (2013). Genetics of pigmentation in dogs and cats. Annu. Rev. Biosci. 1: 125-156.CrossrefGoogle Scholar

  • Kaplan J., De Domenico I.. Ward D.M. (2008). Chediak-Higashi syndrome. Curr. Opin. He- matol., 15: 22-29.Google Scholar

  • Kim J.H.. Kang Kl., Sohn H.J., Woo H., Jean Y.H.,Hwang E.K (2005). Color-dilutionalo- pecia in dogs. J. Vet. Sei, 6: 259-261.Google Scholar

  • Kunieda T. (2005). Identification of genes responsible for hereditary diseases in Japanese beef cattle. Anim. Sei. J., 76: 525-533.Google Scholar

  • LightbodyT. (2002). Foal with Overo lethal white syndrome bom to a registered quarter horse mare. Can. Vet. J., 43: 715-717.Google Scholar

  • Lightner J.K (2009). Genetics of coat color II: the agouti signaling protein (ASIP) gene. Answers Res. J., 2: 79-84.Google Scholar

  • Lightner JJC. (2010). Post-flood mutation of the KIT gene and the rise of white coloration patterns. J. Creation, 24: 67-72.Google Scholar

  • Manne J.,Argeson AC.. Siracusa LID. (1995). Mechanism for the pleiotropic effects of the agouti gene. PNAS USA, 92: 4721^724.CrossrefGoogle Scholar

  • Marklund S., Möller M, Sandberg K, Andersson L. (1999). Close association between sequence polymorphism in the KIT gene and roan coat color in horses. Mamm Genome. 10: 283-288.PubMedCrossrefGoogle Scholar

  • Mau C., Poncet PA., Bucher B.. Stranzinger G., Rieder S. (2004). Genetic mapping of dominant white (W). a homozygous lethal condition in the horse (Equiis caballus). J. Anim Breed. Genet.. 121: 374-383.CrossrefGoogle Scholar

  • Pastural E..Ersoy F.,Yalman N.,Wulffraat N.,Grillo E.,Ozkinay F.,Tezcan L, Gediköglu G., Philippe N., Fischer A, de Sain BasileG. (2000). Two genes are responsible for Griscelh syndrome at the same 15q21 locus. Genomics, 63: 299-306.CrossrefGoogle Scholar

  • Philipp U., Lupp B., Mömke S., Stein V., Tipold A., Eule J.C., Rehage J., Distl O. (2011). A MI IF mutation associated with a dominant white phenotype and bilateral deafness in Ger- man Fleckvieh cattle. PLoS ONE, 6(12): 1-6.Google Scholar

  • Pielberg G., Olsson C., Syvanen A.C., Abdersson L. (2002). Unexpected high allel- ic diversity at the KIT locus causing dominant white color in the domestic pigs. Genetics. 160: 305-311.Google Scholar

  • PingaultV.,Ente D.,Dastot-Le Moal F.,Gooddens M,Marlin S.,Bondurand N. (2010). Review and update of mutations causing Waardenburg syndrome. Hum. Mutat.. 31: 391-406.CrossrefGoogle Scholar

  • Reissmann M, Bierwolf J.. Brockmann G.A (2007). Two SNPs in the SILV gene are as- sociated with silver coat colour in ponies. Anim Genet., 38, p. 106.Google Scholar

  • Reissmann M., Ludwig A. (2013). Pleiotropic effects of coat colour-associated mutations in hu- mans. mice and other mammals. Semin Cell Dev. Biol., 24: 576-586.CrossrefGoogle Scholar

  • Rosengren Pielberg G., Golovko A., Sundström E., Curik L, Lennartsson J., Seltenhammer M.H., Druml T., Binns M, Fitzsimmons C., Lindgren G., Sandberg K, Baumung R, Vetterlein M, Strömberg S., Grabherr M, Wa- de C., Lindblad-Toh K, Ponten F., Heldin C.H., Sölkner J., Andersson L. (2008). A cis-acting regulatory mutation causes premature hair graying and susceptibility to mela- noma in the horse. Nat. Genet.. 40: 1004-1009.CrossrefGoogle Scholar

  • Scherer D., Kumar R (2010). Genetics of pigmentation in skin cancer - a review. Mutat. Res., 705:141-153.Google Scholar

  • Schmutz S.M., Berryere T.G. (2007). Genes affecting coat colour pattern in domestic dogs: a review. Anim Genet., 38: 539-549.PubMedCrossrefGoogle Scholar

  • Schoeman S. J. (1998). Genetics and environmental factors influencing the quality of pelt traits in Karakul sheep. South African J. Anim Sei., 28: 125-137.Google Scholar

  • Seitz JJ., Schmutz S.M,Thue T.D.. Buchanan F.C. (1999). A missense mutation in the bo- Google Scholar

About the article

Received: 2014-06-12

Accepted: 2014-07-18

Published Online: 2015-03-03

Published in Print: 2015-01-01

Citation Information: Annals of Animal Science, Volume 15, Issue 1, Pages 3–17, ISSN (Online) 2300-8733, DOI: https://doi.org/10.2478/aoas-2014-0066.

Export Citation

© by Krystyna M. Charon. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in