Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
See all formats and pricing
More options …

Diabetes Mellitus in Cats Relevant to Human Type 2 Diabetes – Current Knowledge and New Treatment Strategies – A Review

Katarzyna Palus
  • Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarosław Całka
  • Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-03 | DOI: https://doi.org/10.2478/aoas-2014-0067


Diabetes mellitus is one of the most commonly encountered endocrinopathies in domestic cats. Numerous studies have shown that feline diabetes mellitus (FDM) closely resembles human type 2 diabetes mellitus (T2DM), a common pathogenesis including insulin resistance and impaired insulin secretion as well as the same risk factors. This similarity provides ground for better understanding of their pathogenesis as well as more efficient management, novel treatment and prevention options for the disease in both species. Recently, modulation of the incretin system has become a new area of active investigations by several pharmaceutical companies. Concerning the role of incretins in glucose homeostasis, therapies based on activating the incretin axis have proved highly effective in treating T2DM. Glucagon-like peptide 1 (GLP-1) receptors agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors have been recently developed agents for diabetes therapy. Furthermore, studies in healthy cats demonstrated that those drugs stimulate insulin secretion and lower glucagon levels. There is a need of additional clinical evaluation of action of the drugs in cats suffering from FDM. Moreover, studies in cats may contribute to the development of knowledge on the use of new drugs in treatment of human T2DM because cats are an excellent model for the study of diabetes.

Keywords: feline diabetes mellitus; human type 2 diabetes mellitus; the incretin effect; DPP-4 inhibitors; GLP-1 receptors agonists


  • Appleton D.J.. Rand J.S., S u n v o 1 d G.D. (2001). Insulin sensitivity decreases with obesity', and lean cats with low insulin sensitivity are at greatest risk of glucose intolerance with weight gain. J. Feline Med. Surg., 3: 211-288.Google Scholar

  • Butler AE., Janson J.. Bonner-Weir S., Ritzel R, Rizza RA, Butler P.C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52: 102-110.CrossrefPubMedGoogle Scholar

  • Callegari C., Mercuriali E., Hafner M, Coppola L.M., Guazzetti S., Lutz T.A., R e u s c h C.E.. Z i n i E. (2013). Survival time and prognostic factors in cats with newly diagnosed diabetes mellitus: 114 cases (2000-2009). J. Am. Vet. Med. Assoc., 243: 91-95.Google Scholar

  • Caney S.M (2013). Pancreatitis and diabetes in cats. Vet. Clin. North. Am. Small. Anim Pract.. 43: 303-317.CrossrefGoogle Scholar

  • Colditz G. A, Willett W.C., RotnitzkyA,Manson J.E. (1995). Weight gain as a risk factor for clinical diabetes in women. Ann. Intern. Med.. 122: 481-486.Google Scholar

  • Crenshaw' KL.. Peterson M.E. (1996). Pretreatment clinical and laboratory evaluation of cats with diabetes mellitus: 104 cases (1992-1994). J. Am. Vet. Med. Assoc., 209: 943-949.Google Scholar

  • Davidson J. A (2013). The placement of DPP 4 inhibitors in clinical practice recommendations for the treatment of type 2 diabetes. Endocr. Pract.. 19: 1050-1061.PubMedCrossrefGoogle Scholar

  • Donath MY., Gross D.J., Cerasi E., Kaiser N. (1999). Hvperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammonas obesus during development of diabetes. Diabetes. 48: 738-744.PubMedCrossrefGoogle Scholar

  • Donath MY.,Ehses J.A.,Maedler K,Schumann D.M,Ellingsgaard H.,Eppler E., Reinecke M. (2005). Mechanisms of beta-cell death in type 2 diabetes. Diabetes. 54: S108-S113.CrossrefGoogle Scholar

  • Drucker D.J. (2006). The biology of incretin homiones. Cell. Metab.. 3: 153-165.PubMedCrossrefGoogle Scholar

  • Drucker D.J., N a u c k MA. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368: 1696-1705.Google Scholar

  • Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio LI., Meier D.T., Eppler E., Bouzakri K, Wueest S., Muller Y.D., Hansen A.M, Reinecke M,Konrad D.,Gassmann M,Reimann F.,Halban P.A,Gromada J.,Druck- e r D.J., Gribbe F.M., Ehses J.A, Donath MY. (2011) Interleukin-6 enhances insulin se- cretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med.. 17: 1481-489.CrossrefGoogle Scholar

  • Ezcurra M., Reimann F., Gribble F.M, Emery E. (2013). Molecular mechanisms of incretin hormone secretion. Curr. Opin. Pharmacol.. 13: 922-927.PubMedCrossrefGoogle Scholar

  • Furrer D.. Kaufmann K. Tschuor F., Reusch C.E., Lutz TA. (2010). The dipeptidyl peptidase IV inhibitor NVP-DPP728 reduces plasma glucagon concentration in cats. Vet. J.. 183: 355-357.Google Scholar

  • Gilor C.,Graves TK,Gilor S.,Ridge TK,Rick M(2011 a).TheGLP-l mimeticexenatide potentiates insulin secretion in healthy cats. Domest. Anim Endocrinol., 41: 42-49. Google Scholar

  • Gilor C., Graves T.K. Gilor S.. Ridge T.K, Weng RY., Dos sin O. (2011 b). The incretin effect in cats: comparison between oral glucose, lipids, and amino acids. Domest. Anim. Endo- crinol., 40:205-212.Google Scholar

  • Goossens M.M., Nelson RW.. Feldman E.C., Griffey S.M. (1998). Responses to insulin treatment and survival in 104 cats with diabetes mellitus (1985-1995). J. Vet. Intern. Med.. 12: 1-6.Google Scholar

  • Greco D.S. (2012). Feline acromegaly. Top. Companion Anim Med.. 27: 31-35.Google Scholar

  • Hall D.G., Kelley L.C., Gray M.L., Glaus T.M (1997). Lymphocytic inflammation of pancre- atic islets in a diabetic cat. J. Vet. Diagn Invest., 9: 98-100.CrossrefGoogle Scholar

  • Henson M.S.. O'Brien TD. (2006). Feline models of type 2 diabetes mellitus. ILAR J., 47: 234-242.Google Scholar

  • Hoen g M (2012). The cat as a model for human obesity and diabetes. J. Diabetes. Sei. TechnoL. 6: 525-533.Google Scholar

  • Hoenig M, Thomaseth K. Brandao J., Waldron M, Ferguson D.C. (2006). Assess- ment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest. Anim Endocrin.. 31: 373-389.CrossrefGoogle Scholar

  • Hoenig M, Thomaseth K, Waldron M, Ferguson D.C. (2007). Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292: R227-2634.Google Scholar

  • Hoenig M., Jordan E.T., Fergus on D.C., de Vries F. (2010). Oral glucose leads to a differ- ential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest. Anim. Endocrin.. 38: 95-102.Google Scholar

  • Hotamisligil G.S., Arner P., Caro J.F., Atkinson RL., Spiegelman B.M (1995). In- creased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resis- tance. J. Clin. Invest., 95: 2409-2415.Google Scholar

  • Imamura S.,Hirai K.Hirai A. (2013). The glucagon-like peptide-1 receptor agonist, liraglutide. attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. Tohoku J. Exp. Med., 231: 57-61.Google Scholar

  • Inzucchi S.E., S h e r w i n RS. (2005). The prevention of type 2 diabetes mellitus. Endocrinol. Me- tab. Clin. North. Am., 34: 199-219.Google Scholar

  • Johnson K.H.. Hayden D.W., O'Brien T.D., Westermark P. (1986). Animal model of hu- man disease: spontaneous diabetes mellitus-islet amyloid complex in adult cats. Am. J. Pathol.. 125: 416-419.Google Scholar

  • Johnson KH., O 'Brien T.D., Jordan K, Westermark P. (1989). Impaired glucose toler- ance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells. Am J. Pathol., 135: 245-250.Google Scholar

  • Kirby M.,Yu DM., O ’ Connor S.,Gorrel M.D. (2010). Inhibitor selectivity in the clinical ap- plication of dipeptidyl peptidase-4 inhibition. Clin. Sei., 118: 31-41.Google Scholar

  • Kraus M.S., C a 1 v e r t C. A, Jacobs G.J., B r o w n J. (1997). Feline diabetes mellitus: a retrospec- tive mortality study of 55 cats (1982-1994). J. Am. Anim. Hosp. Assoc., 33: 107-111.Google Scholar

  • Lederer R,Rand J.S., Jonsson N.N.,Hughes I.P.,Morton J.M (2009). Frequency of fe- line diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J., 179: 254-258.Google Scholar

  • Lee Y.S., Jun H.S. (2013). Anti-diabetic action of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism, doi: 10.1016/j.metabol.2013.09.010.PubMedGoogle Scholar

  • Link KR.Allio I.,Rand J.S.,Eppler E. (2013). The effect of experimentally induced chronic hyperglycaemia on serum and pancreatic insulin, pancreatic islet IGF-I and plasma and urinary ketones in the domestic cat (Felis felis). Gen. Comp. EndocrinoL. 188: 269-281.Google Scholar

  • Lutz T.A., Rand J.S. (1995). Pathogenesis of feline diabetes mellitus. Vet. Clin. North. Am Small. Anim Pract., 25: 527-552.Google Scholar

  • Maedler K, Spinas G.A., Lehmann R, Sergeev P., Weber M, Fontana A., Kai- ser N.. Donath M.Y. (2001). Glucose induced beta-cell apoptosis via upregulation of the Fas- receptor in human islets. Diabetes, 50: 1683-1690.CrossrefGoogle Scholar

  • Maedler K,Oberholzer J., Bur eher P., Spinas G.A., Donath MY. (2003). Monounsat- urated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes, 52: 726-733. CrossrefGoogle Scholar

  • Maedler K, Sergeev P., Ehses JA., Mathe Z., Bosco D., Berney T.. Dayer J.M., R e i n e c k e M.. H a 1 b a n PA.. Donath M.Y. (2004). Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-lbeta in human islets. Proc. Natl. Acad. Sei. USA, 101: 8138-8143.Google Scholar

  • McCann T.M., Simpson KE.. Shaw D.J., Butt JA., Gunn-Moore DA. (2007). Feline diabetes mellitus in the UK: the prevalence within an insured cat population and a questionnaire- based putative risk factor analysis. J. Feline Med. Surg.. 9: 289-299.CrossrefGoogle Scholar

  • Miller C., Bartges J., Cornelius L., Norton N., Barton M (1998). Tumor necrosis fac- tor-alpha levels in adipose tissue of lean and obese cats. J. Nutr.. 128: 2751S-2752S.Google Scholar

  • Mori A, Lee P., Yamashita T., Nishimaki Y., Oda H., Saeki K, Miki Y., Mizu- tani R.Ishioka K.Honjo T.,Arai T.,Sako T. (2009). Effect of glimepiride and nateglin- ide on serum insulin and glucose concentration in healthy cats. Vet. Res. C'ommun., 33: 957-970.Google Scholar

  • Nack R.. DeClue AE. (2014). In cats with newly diagnosted diabetes mellitus, use of a near-eu- glycemic management paradigm improves remission rate over a traditional paradigm Vet. Q.. 25: 1-5.Google Scholar

  • Nelson RW., Feldman E.C.,Ford SI., Roe me r O.P (1993). Effect of an orally administered sulfonylurea, glipizide, for treatment of diabetes mellitus in cats. J. Am Vet. Med. Assoc., 203: 821-827.Google Scholar

  • Nelson R, Spann D.. Elliott D., Brondos A, Vulliet R (2004). Evaluation of the oral antihvperglycemic drug metformin in normal and diabetic cats. J. Vet. Intern. Med., 18: 18-24.Google Scholar

  • Niessen S.J. (2010). Feline acromegaly: an essential differential diagnosis for the difficult diabetic. J. Feline Med. Surg., 12: 15-23.Google Scholar

  • O'Brien T.D. (2002). Pathogenesis of feline diabetes mellitus. Mol. Cell. Endocrinol.. 197: 213-219.Google Scholar

  • Os to M, Zini E., Reusch C.E., Lutz TA (2013). Diabetes from humans to cats. Gen. Comp. Endocrinol., 182: 48-53.Google Scholar

  • Palus K. Rytel L., C a 1 k a J. (2013). Familial diseases in Chinese Shar-pei dogs associated with elevated levels of IL-6 (in Polish). Med. Weter., 69: 471-474.Google Scholar

  • Perley M.J., Kipnis D.M. (1967). Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J. Clin. Invest., 46: 1954-1962.Google Scholar

  • Porte D. (1991). Beta-cells in type II diabetes mellitus. Diabetes. 40: 166-180.PubMedCrossrefGoogle Scholar

  • Prahl Al., Guptill L.. G lie km an N.W., Tetrick M., Glickman L.T. (2007). Time trends and risk factors for diabetes mellitus in cats presented to veterinary teaching hospitals. J. Feline Med. Surg., 9: 351-358.CrossrefGoogle Scholar

  • Rand J.S. (1999). Current understanding of feline diabetes mellitus: part 1. pathogenesis. J. Feline Med. Surg., 1: 143-153.Google Scholar

  • Rand J.S. (2013). Pathogenesis of feline diabetes. Vet. Clin. North. Am. Small. Anim Pract.. 43: 221-231.CrossrefGoogle Scholar

  • Rand J.S., Fleeman L.M. Farrow H.A., Appleton D.J., Lederer R (2004). Canine and feline diabetes mellitus: nature or nurture? J. Nutr., 134: 2072S-2080S.Google Scholar

  • Reusch C.E., Padrutt I. (2013). New incretin hormonal therapies in humans relevant to diabetic cats. Vet. Clin. N. Am.-Small. 43: 417-433.CrossrefGoogle Scholar

  • Reusch C.E., Kley S.. Casella M, Nelson RW., Mol J., Zapf J. (2006). Measurements of growth hormone and insulin-like growth factor 1 in cats with diabetes mellitus. Vet. Rec.. 158: 195-200.Google Scholar

  • Reusch C.E..Hafner M.,Tschuor F.,Lutz T.A.,Zini E. (2011). Diabetes remission in cats: a review. Schweiz. Arch. Tieiheilkd., 153: 495-500.Google Scholar

  • Richardson V.R, Smith KA. Carter A.M. (2013). Adipose tissue inflammation: Feed- ing the development of type 2 diabetes mellitus. Immunobiology, <http://dx.doi.org/> 10.1016/j. imbio.2013.05.002CrossrefGoogle Scholar

  • Sallander M, Eli as son J., Hedhammar A. (2012). Prevalence and risk factors for the devel- opment of diabetes mellitus in Swedish cats. Acta Vet. Scand., 54, p. 61.Google Scholar

  • Slingerland L.L,Fazilova V.V.,Plantinga E.A.,Kooistra H.S..Beynen AC. (2009). Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet. J., 179: 247-253. Google Scholar

  • Spellman C. W. (2010). Pathophysiology of type 2 diabetes: targeting islet cell dysfunction. J. Am. Osteopath. Assoc., 110: S2-7.Google Scholar

  • Suzuki D., Toyoda M., Kimura M., Miyauchi M, Yamamoto N., Sato H.T Tana- ka E.. Kuriyama Y., Miyatake R. Abe M, Umezono T., Fukagavva M (2013). Effects of liraglutide. a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients with type 2 diabetes mellitus. Intern Med., 52: 1029-1034.Google Scholar

  • Trayhurn P.. Wood I.S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr., 92: 347-355.Google Scholar

  • Wild S., Roglic G., Green A., Sicree R, King R (2004). Global prevalence of diabetes. Diabetes Care, 27: 1047-1053.Google Scholar

  • Winzell M.S., Ahr e n B. (2007). G-protein-coupled receptors and islet function - implications for treatment of type 2 diabetes. Pharmacol. Ther., 116: 437-448.Google Scholar

  • Zini E., Hafner M, Osto M., Franchini M, Ackermann M, Lutz T.A., Reusch C.E. (2010). Predictors of clinical remission in cats with diabetes mellitus. J. Vet. Intern Med.. 24: 1314-1321. CrossrefGoogle Scholar

About the article

Received: 2014-06-10

Accepted: 2014-07-21

Published Online: 2015-03-03

Published in Print: 2015-01-01

Citation Information: Annals of Animal Science, Volume 15, Issue 1, Pages 19–30, ISSN (Online) 2300-8733, DOI: https://doi.org/10.2478/aoas-2014-0067.

Export Citation

© by Katarzyna Palus. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in