Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annals of Animal Science

The Journal of National Research Institute of Animal Production

4 Issues per year


IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687

Open Access
Online
ISSN
2300-8733
See all formats and pricing
More options …

15. Comparison of the Effect of a Standard Inclusion Level of Inorganic Zinc to Organic Form at Lowered Level on Bone Development in Growing Male Ross Broiler Chickens

Ewa Tomaszewska
  • Corresponding author
  • Department of Animal Physiology, University of Life Sciences, Akademicka 12, 20-950 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Dobrowolski
  • Department of Comparative Anatomy and Anthropology Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Kwiecień
  • Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agata Wawrzyniak
  • Department of Animal Anatomy and Histology, University of Life Sciences, Akademicka 12, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Burmańczuk
  • Department of Animal Physiology, University of Life Sciences, Akademicka 12, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-06 | DOI: https://doi.org/10.1515/aoas-2015-0087

Abstract

The purpose of this study was to compare the effect of a standard inclusion level of inorganic zinc to organic form at lowered level on the bone development in growing male Ross 308 chickens, assessed on the basis of mechanical, geometric, and histomorphometric parameters of limb bone, and bone zinc content, as well as hormones of somatotropic axis. A total of 80 one-day-old male Ross broiler chickens were randomly allocated to 2 groups of 40 chickens each. The control group was fed with a corn-soybean meal basal diet providing the recommended zinc amount (100 mg×kg-1) from zinc oxide, and the experimental group was supplemented with glycinate chelate providing 25% of the total requirement of the microelement recommended for Ross 308 broiler chicks. The mechanical and histomorphometric parameters and geometry of tibia were determined as well as the serum concentration of growth hormone, IGF-1, osteocalcin and leptin. The serum concentration of Zn, Cu, Ca, Mg, Fe, P and zinc bone content were determined. The results showed that birds fed with the diet supplemented with organic zinc in the amount of 25% of the recommended amount did not exhibit weight and general growth disorders and had an unchanged concentration of growth hormone, leptin, and IGF-1. The serum concentration of Zn, Cu, Ca, Mg, Fe, P did not differ between groups. The contents of zinc detected in bones in the controls and the group supplemented with the organic source did not differ as well. Although tibial mechanics and geometry remained unchanged, histomorphometry revealed a disproportionately large osteoporotic bone. The changes in tibial trabecular bone as a result of the diet supplemented with glycinate chelate only in 25% of the total requirement of the microelement recommended for Ross 308 broiler chicks seems to be insufficient for tibia development.

Keywords: chicken; zinc chelate; tibia; histomorphometry; mechanics

References

  • Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev. Med. Chem., 4: 11-21.CrossrefGoogle Scholar

  • Aviagen(2013). Ross 308 Broiler Nutrition specification. http://www.avigen.com/Ross-308/ Google Scholar

  • Aviagen(2014). Ross 308 Broiler Nutrition specification. Aviagen Incorporated Publishing, Huntsville, AL, USA.Google Scholar

  • Cao J., Henry P.R., Davis S.R., Cousins R.J., Miles R.D., Littell R.C., Ammer- man C.B. (2002). Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Anim. Feed Sci. Technol., 101: 161-170.CrossrefGoogle Scholar

  • Cook M.E. (2000). Skeletal deformities and the cause: introduction. Poultry Sci., 79: 982-984.CrossrefGoogle Scholar

  • El-Husseiny O.M, Hashish S.M., Ali R.A., Arafa S.A., Abd El-Samee L.D., Ole- my A.A. (2012). Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. Int. J. Poultry Sci., 11: 368-377.CrossrefGoogle Scholar

  • Ferretti J.L., Capozza R.F., Mondelo N., Zanchetta J.R. (1993). Interrelationships between densitometric, geometric and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modelling. J. Bone Min. Res., 8: 1395-1399.Google Scholar

  • Kwiecień M. (2012). The effect of level and form of Cu and Fe in feed on performance and some metabolic indices of broiler chickens (in Polish). Rozpr. Nauk., UP Lublin, 359 pp.Google Scholar

  • Kwiecień M., Winiarska- Mieczan A., Zawiślak K., Sroka Sz. (2014). Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci.,14: 127-139.Web of ScienceCrossrefGoogle Scholar

  • Marchetti M., Ashmead H. De W., Tossani N., Marchetti S., Ashmead S.D. (2000). Comparison of the rates of vitamin degradation when mixed with metal sulphates or metal amino acid chelates. J. Food Compos. Anal., 13: 875-884.CrossrefGoogle Scholar

  • Mocetti P., Ballanti P., Zalzal S., Silvestrini G., Bonucci E., Nanci A. (2000). Ahistomorphometric, structural and immunocytochemical study of the effects of diet-induced hypocalcemia on bone in growing rats. J. Histochem. Cytochem., 48: 1059-1077.CrossrefGoogle Scholar

  • National Research Council (1994). Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.Google Scholar

  • Parfitt A.M., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H., Meunier P.J., Ott S.M., Recker R.R. (1987). Bone histomorphometry: standardization of nomenclature, symbols and units. J. Bone Min. Res., 2: 595-610.CrossrefGoogle Scholar

  • Park S.Y., Birkhold S.G., Kubena L.F, Nisbet D.J., Ricke S.C. (2002). Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol. Trace Element Res., 101: 147-163.Google Scholar

  • Paz A., Mendes A.A., Martins M.R.F.B., Fernandes B.C.S., Almeida I.C.L., Mil- bradt E.L., Balog A., Komiyama C.M. (2009). Follow-up of the development of femoral degeneration lesions in broilers. Int. J. Morphol., 27: 571-575.Google Scholar

  • Paz I.C.L.A., Garcia R.G., Bernardi R.,de Oliveira Seno L.,de Alencar Nääs I., Caldara F.R. (2013). Locomotor problems in broilers reared on new and re-used litter. Italian J. Anim. Sci., 12: 275-279.Google Scholar

  • Sahraei M., Janmmohamdi H., Taghizadeh A., Cheraghi S. (2012). Effect of different zinc sources on tibia bone morphology and ash content of broiler chickens. Advan. Biol. Res., 6: 128-132.Google Scholar

  • Seedor G.J., Quartuccio H.A., Thompson D.D. (1991). The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J. Bone Min. Res., 6: 339-346.Google Scholar

  • Skřivan M., Skřivanová V., Marounek M. (2005). Effects of dietary zinc, iron and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil and herbage. Poultry Sci., 84: 1570-1575.CrossrefGoogle Scholar

  • Srinivasan S., Keilin S.A., Judex S., Bray C., Zernicke R.F., Gross T.S. (2000). Aging- induced osteopenia in avian cortical bone. Bone, 26: 361-365.CrossrefGoogle Scholar

  • Starcher B.C., Hill C.H., Madaras J.G. (1980). Effect of zinc deficiency on bone collagenase and collagen turnover. J. Nutr., 110: 2095-2102.Google Scholar

  • Śliwa E., Radzki R.P., Puzio I. (1996). Osteochondrosis and tibial dyschondroplasia in chickens, pigs and foals. Med. Weter., 52: 156-159.Google Scholar

  • Świątkiewicz S., Koreleski J., Zhong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317-328.CrossrefGoogle Scholar

  • Tatara M.R., Brodzki A., Krupski W., Śliwa E., Silmanowicz P., Majcher P., Pier - zynowski S.G., Studziński T. (2005). Effect of alpha-ketoglutarate (AKG) on bone homeostasis and plasma amino acids in turkeys. Poultry Sci., 84: 1604-1609.CrossrefGoogle Scholar

  • Tomaszewska E., Dobrowolski P., Siwicki A.K. (2012 a). Maternal treatment with dexamethasone at minimal therapeutic doses inhibits neonatal bone development inagender-dependent manner. Livest. Sci., 146: 175-182.Google Scholar

  • Tomaszewska E., Dobrowolski P., Wydrych J. (2012 b). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547-554.Google Scholar

  • Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479-486.Web of ScienceCrossrefGoogle Scholar

  • Vieira S.L. (2008). Chelated minerals for poultry. Rev. Bras. Ciênc. Avíc., 10: 73-79.Google Scholar

  • Wang X., Fosmire G.J., Gay C.V., Leach Jr R.M. (2002). Short-term zinc deficiency inhibits chondrocyte proliferation and induces cell apoptosis in the epiphyseal growth plate of young chickens. J. Nutr., 132: 665-673.Google Scholar

  • Webster A.B. (2004). Welfare implications of avian osteoporosis. Poultry Sci., 83: 184-92.CrossrefGoogle Scholar

  • Whitehead C.C. (2004). Overview of bone biology in the egg-laying hen. Poultry Sci., 83: 193-199.CrossrefGoogle Scholar

  • Ziaie H., Seedor J.G., Quarruccio H.A., Thompson D.D. (2001). The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J. Bone Min. Res., 6: 339-346.Google Scholar

  • Ziaie H., Bashtani M., Karimi M., Torshizi A., Naeeimipour H., Farhangfar H., Zeinali A. (2011). Effect of antibiotic and its alternatives on morphometric characteristics, mineral content and bone strength of tibia in Ross broiler chickens. Global Vet., 7: 315-322.Google Scholar

About the article

Received: 2015-08-07

Accepted: 2015-12-15

Published Online: 2016-05-06

Published in Print: 2016-04-01


Citation Information: Annals of Animal Science, Volume 16, Issue 2, Pages 507–519, ISSN (Online) 2300-8733, DOI: https://doi.org/10.1515/aoas-2015-0087.

Export Citation

© by Ewa Tomaszewska. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ewa Tomaszewska, Piotr Dobrowolski, Małgorzata Kwiecień, Anna Winiarska-Mieczan, Agnieszka Tomczyk, Siemowit Muszyński, and Bożena Gładyszewska
Annals of Animal Science, 2017, Volume 0, Number 0
[2]
Siemowit Muszyński, Ewa Tomaszewska, Małgorzata Kwiecień, Piotr Dobrowolski, and Agnieszka Tomczyk
Biological Trace Element Research, 2017
[3]
E Tomaszewska, S Muszyński, P Dobrowolski, M Kwiecień, A Winiarska-Mieczan, I Świetlicka, and A Wawrzyniak
Revista Brasileira de Ciência Avícola, 2017, Volume 19, Number 1, Page 159

Comments (0)

Please log in or register to comment.
Log in