Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Annual of Navigation

The Journal of Polish Navigational Forum

1 Issue per year

Open Access
Online
ISSN
2300-6633
See all formats and pricing
More options …

LOW-COST NAVIGATION AND GUIDANCE SYSTEMS FOR UNMANNED AERIAL VEHICLES — PART 2: ATTITUDE DETERMINATION AND CONTROL

Roberto Sabatini / Leopoldo Rodríguez / Anish Kaharkar / Celia Bartel / Tesheen Shaid / David Zammit-Mangion
Published Online: 2014-02-27 | DOI: https://doi.org/10.2478/aon-2013-0008

ABSTRACT

This paper presents the second part of the research activity performed by Cranfield University to assess the potential of low-cost navigation sensors for Unmanned Aerial Vehicles (UAVs). This part focuses on carrier-phase Global Navigation Satellite Systems (GNSS) for attitude determination and control of small to medium size UAVs. Recursive optimal estimation algorithms were developed for combining multiple attitude measurements obtained from different observation points (i.e., antenna locations), and their efficiencies were tested in various dynamic conditions. The proposed algorithms converged rapidly and produced the required output even during high dynamics manoeuvres. Results of theoretical performance analysis and simulation activities are presented in this paper, with emphasis on the advantages of the GNSS interferometric approach in UAV applications (i.e., low cost, high data-rate, low volume/weight, low signal processing requirements, etc.). The simulation activities focussed on the AEROSONDE UAV platform and considered the possible augmentation provided by interferometric GNSS techniques to a low-cost and low-weight/volume integrated navigation system (presented in the first part of this series) which employed a Vision-Based Navigation (VBN) system, a Micro-Electro-Mechanical Sensor (MEMS) based Inertial Measurement Unit (IMU) and code-range GNSS (i.e., GPS and GALILEO) for position and velocity computations. The integrated VBN-IMU-GNSS (VIG) system was augmented using the inteferometric GNSS Attitude Determination (GAD) sensor data and a comparison of the performance achieved with the VIG and VIG/GAD integrated Navigation and Guidance Systems (NGS) is presented in this paper. Finally, the data provided by these NGS are used to optimise the design of a hybrid controller employing Fuzzy Logic and Proportional-Integral-Derivative (PID) techniques for the AEROSONDE UAV.

STRESZCZENIE

Artykuł przedstawia drugą część badań wykonanych na Uniwersytecie Cranfield dla oszacowania potencjalnych możliwości tanich czujników nawigacyjnych dla bezzałogowych obiektów latających (UAVs). Ta część skupia się na pomiarach fazowych w globalnych nawigacyjnych systemach satelitarnych (GNSS) dla określenia orientacji przestrzennej i sterowania małego lub średniego UAV. Zastosowano rekurencyjne algorytmy optymalnej estymacji dla łącznego przetwarzania różnorodnych pomiarów otrzymanych za pomocą systemu wielkoantenowego testowanego w różnorodnych warunkach wynikających z ruchu obiektu. Zaproponowane algorytmy okazały się zbieżne i zapewniły oczekiwane rezultaty nawet w warunkach bardzo dynamicznych manewrów. Przedstawiono wyniki analiz teoretycznych oraz symulacji, zwracając uwagę na zalety podejścia interferometrycznego w technice GNSS zastosowanej w warunkach wynikających z cech UAV (niski koszt, wysoka szybkość transmisji danych, niska waga i objętość, niewielkie wymagania odnośnie przetwarzania sygnału itd.). Symulacje odniesiono do UAV typu AEROSONDE z zamiarem poszerzenia możliwości systemu w efekcie zastosowania technik interferometrii GNSS, łącznie z tanimi i niewielkimi zintegrowanymi systemami nawigacyjnymi (przedstawionymi w pierwszej części badań w poprzednim artykule) zbudowanymi na systemach optycznych oraz systemie inercjalnym opartym na sensorach klasy MEMS, współpracującym z kodowym systemem GNSS. W artykule przedstawiono szczegółową analizę własności systemu zintegrowanego, łączącego techniki optyczne z GNSS i inercjalnymi, dodatkowo wspartego technikami interferometrycznymi GNSS dla określenia orientacji przestrzennej obiektu (GNSS Attitude Determination - GAD) oraz porównania z różnymi kombinacjami tych modułów. Ponadto podjęto próbę zastosowania danych dostarczonych przez opisany system NGS do zoptymalizowania mieszanego kontrolera wykorzystującego logikę rozmytą i klasyczny regulator PID do sterowania bezzałogowcem AEROSONDE.

Keywords: GNSS Attitude Determination; Attitude Determination and Control; Unmanned Aerial Vehicle; Low-cost Navigation Sensors; Fuzzy Logic Controller; PID Controller

References

  • [1] Angrisano A., GNSS/INS integration methods, Dottorato di ricerca (PhD) in Scienze Geodetiche e Topografiche Thesis, Universita’ degli Studi di Napoli PARTHENOPE, Naple 2010.Google Scholar

  • [2] Brown A. K., et al., Interferometric Attitude Determination Using GPS, Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning, Las Cruces, NM, 1982, Vol. II, pp. 1289-1304.Google Scholar

  • [3] Brunner F., et al., GPS Signal Diffraction Modelling: the Stochastic SIGMA-D Model, Journal of Geodesy, 1999, 73(5), pp. 259-267.Google Scholar

  • [4] Chen Z., Birchfield S. T., Qualitative vision-based path following, IEEE Trans. on Robotics, 2009, Vol. 25, issue 3, pp. 749-754.Google Scholar

  • [5] Cohen C. E., Attitude Determination Using GPS, PhD Thesis, Stanford University, 1992.Google Scholar

  • [6] Cohen C., et al., Flight Tests of Attitude Determination Using GPS Compared Against an Inertial Navigation Unit, Navigation (ION Journal), 1994, Vol. 41.Google Scholar

  • [7] Gebre-Egziabher D., Hayward R., Powell. J, A Low-Cost GPS/Inertial Attitude Heading Reference System (AHRS) for General Aviation Applications, 1998 IEEE Position, Location and Navigation Symposium - PLANS ‘98, Palm Springs, California 1998.Google Scholar

  • [8] Giorgi G., Teunissen P. J. G., Carrier phase GNSS attitude determination with the Multivariate Constrained LAMBDA method, Aerospace Conference, 2010Available online at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5446910&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D5446910 (website visited in 2012).Google Scholar

  • [9] Giorgi G., Teunissen P. J. G., Gourlay T. P., Instantaneous Global Navigation Satellite System (GNSS)-Based Attitude Determination for Maritime Applications, IEEE Journal of Oceanic Engineering Society, 2012, Vol. 37, No. 99, pp. 348-362.Web of ScienceGoogle Scholar

  • [10] Godha S., Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application, UCGE Report No. 20239, University of Calgary, Department of Geomatics Engineering, Alberta, Canada, 2006.Google Scholar

  • [11] Gong X., Abbott A. L., Fleming G. A., A Survey of Techniques for Detection and Tracking of Airport Runways, Collection of Technical Papers, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, Vol. 23, pp. 1-14.Google Scholar

  • [12] Hopfield H. S., Tropospheric effect on electromagnetically measured range: Prediction from surface weather data, In Radio Science, 1971, 6(3), pp. 357-367.Google Scholar

  • [13] Keong J., Determining Heading and Pitch Using a Single Difference GPS/GLONASS Approach, PhD Thesis, Department of Geomatics Engineering, University of Calgary, 2007.Google Scholar

  • [14] Kleijer F., Troposphere Modeling and Filtering for Precise GPS Leveling, Nederlandse Commissie voor Geodesie (Netherlands Geodetic Commission), 2004.Google Scholar

  • [15] Lau L., Cross P., A New Signal-to-Noise-Ratio Based Stochastic Model for GNSS High-Precision Carrier Phase Data Processing Algorithms in the Presence of Multipath Errors, Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, TX, 2006, pp. 276-285.Google Scholar

  • [16] Maurer J., Polar Remote Sensing Using an Unpiloted Aerial Vehicle (UAV), Seminar by Dr. James Maslanik, Colorado Center for Astrodynamics Research (CCAR), University of Colorado at Boulder, Available online at: http://www2.hawaii.edu/~jmaurer/uav/#specifications (website visited in 2012).Google Scholar

  • [17] McGraw G.A., Tropospheric Error Modeling for High Integrity Airborne GNSS Navigation, IEEE/ION Position Location and Navigation Symposium, 2012.Google Scholar

  • [18] Misra P., Enge P., Global Positioning System: Signal, Measurements, and Performance, Ganga-Jamuna Press, USA, 2001.Google Scholar

  • [19] Molina P., Wis M., Pares M. E., Blazquez M., Tatjer J. C., Colomina I., New Approaches to IMU Modeling and INS/GPS Integration for UAV-Based Earth-Observation, Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, GA, September 2008, pp. 1335-1344.Google Scholar

  • [20] Nassar S., Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications, UCGE Reports Number 20183, University of Calgary, Department of Geomatics Engineering, Alberta, Canada, 2003. Google Scholar

  • [21] Nixon M. S., Aguado A. S., Feature Extraction and Image Processing, Newnes, 1st Edition, 2002.Google Scholar

  • [22] Park C., et al., Error Analysis of 3-Dimensional GPS Attitude Determination System, International Journal of Control, Automation, and Systems, 2006, Vol. 4, No. 4, pp. 480-485.Google Scholar

  • [23] Park C., Kim I., An Error Analysis of 2-Dimensional Attitude Determination System Using Global Positioning System, IEEE Transactions on Communications, 2000, Vol. E83-B, No. 6, pp. 1370-1373.Google Scholar

  • [24] Parkinson B. W., GPS error analysis, Global Positioning System: Theory and Applications, AIAA, 1996, Vol. 1, pp. 469-483.Google Scholar

  • [25] Pinchin J., GNSS Based Attitude for Small Unmanned Aerial Vehicle, PhD Thesis, University of Cantenbury, 2011.Google Scholar

  • [26] Sabatini R., Kaharkar A., Shaid T., Bartel C., Jia H., Zammit-Mangion D., Vision-based Sensors and Integrated Systems for Unmanned Aerial Vehicles Navigation and Guidance, Proceedings of the SPIE Conference Photonics Europe 2012, Brussels 2012.Google Scholar

  • [27] Sabatini R., Kaharkar A., Shaid T., Bartel C., Jia H., Zammit-Mangion D., Low-cost Vision Sensors and Multisensor Systems for Small to Medium Size UAV Navigation and Guidance, Proceedings of the European Navigation Conference 2012, Gdansk 2012.Google Scholar

  • [28] Sabatini R., Rodríguez L., Kaharkar A., Bartel C., Shaid T., GNSS Data Processing for Attitude Determination and Control of Unmanned Aerial Vehicles, Proceedings of the European Navigation Conference 2012, Gdansk 2012.Google Scholar

  • [29] Sangyam T., Laohapiengsak P., Chongcharoen W., Nilkhamhang I., Path tracking of UAV using self-tuning PID controller based on Fuzzy Logic, Proceedings of SICE Annual Conference, 2010, pp. 1265-1269.Google Scholar

  • [30] Saripalli S., Montgomery J. F., Sukhatme G. S., Vision Based Autonomous Landing of an Unmanned Aerial Vehicle, Proceedings of International Conference of Robotics and Automation, ICRA2002, Washington DC, Virginia, 2002.Google Scholar

  • [31] Teunissen P. J. G., The Least-Squares Ambiguity Decorrelation Adjustment: a Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, 1995, Vol. 70, pp. 65-82.Google Scholar

  • [32] Unmanned Dynamics LLC, AeroSym Aeronatical Simulation Blockset User’s Manal, Available online at: http://people.rit.edu/pnveme/EMEM682n/Matlab_682/aerosim_ug.pdf (website visited in 2012).Google Scholar

  • [33] Van Grass F., et al., GPS Interferometric Attitude and Heading Determination: Initial Flight Test Results, Navigation (ION Journal), 1991, Vol. 38. Google Scholar

  • [34] Wieser A., et al., Improved Positioning Accuracy with High Sensitivity GNSS Receivers and SNR Aided Integrity Monitoring of Pseudo-range Observations, Proceedings of the 18th International Technical Meeting of the Satellite Division of Institute of Navigation, Long Beach, CA, 2005, pp. 13-16. Google Scholar

About the article

Published Online: 2014-02-27

Published in Print: 2013-06-01


Citation Information: Annual of Navigation, ISSN (Online) 1640-8632, DOI: https://doi.org/10.2478/aon-2013-0008.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Suraj Bijjahalli, Subramanian Ramasamy, and Roberto Sabatini
Journal of Intelligent & Robotic Systems, 2017, Volume 87, Number 2, Page 379
[2]
Rohan Kapoor, Subramanian Ramasamy, Alessandro Gardi, Chad Bieber, Larry Silverberg, and Roberto Sabatini
Sensors, 2016, Volume 16, Number 10, Page 1637
[3]
Prof Renuganth Varatharajoo, Roberto Sabatini, Francesco Cappello, Subramanian Ramasamy, Alessandro Gardi, and Reece Clothier
Aircraft Engineering and Aerospace Technology, 2015, Volume 87, Number 6, Page 540

Comments (0)

Please log in or register to comment.
Log in