Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael


CiteScore 2017: 1.31

SCImago Journal Rank (SJR) 2017: 0.530
Source Normalized Impact per Paper (SNIP) 2017: 1.268

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 2, Issue 3

Issues

Manufacturing of a precision 3D microlens array on a steep curved substrate by injection molding process

Hao Zhang
  • Department of Integrated Systems Engineering, The Ohio State University, 210 Baker Systems, 1971 Neil Ave, Columbus, OH 43210, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Scheiding
  • Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
  • Friedrich Schiller University Jena, Institute of Applied Physics, Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lei Li
  • Department of Integrated Systems Engineering, The Ohio State University, 210 Baker Systems, 1971 Neil Ave, Columbus, OH 43210, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Gebhardt
  • Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Risse
  • Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramona Eberhardt
  • Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Tünnermann
  • Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
  • Friedrich Schiller University Jena, Institute of Applied Physics, Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allen Y. Yi
  • Corresponding author
  • Department of Integrated Systems Engineering, The Ohio State University, 210 Baker Systems, 1971 Neil Ave, Columbus, OH 43210, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-02 | DOI: https://doi.org/10.1515/aot-2012-0061

Abstract

In this study, a high volume low cost manufacturing method for microoptical microlens arrays on steep curved substrates using a microinjection molding technique was investigated. The design of the individual lenslets was performed using ZEMAX. This 3D microlens array in this study contains 1219 microlenses that are evenly distributed on its concave surface with a high fill factor. The overall field of view of this microlens array on curved substrates is more than 104°. To complete the manufacturing process, first the mold inserts were machined using a voice coil based fast tool servo technique, then the 3D microlens arrays were injection molded. The injection molding process parameters were evaluated using both experiments and numerical simulation for best molding results. In addition, both geometrical errors and optical performance tests showed that the molded polymer microlens arrays can be used in wide angle imaging applications. This study demonstrated that this combined process is capable of fabricating high precision microlens arrays at steep curved substrates at low cost. The microlens arrays created in this study have broad applications in optical, medical and biomedical domains. The success of this study provided a feasible solution for mass production of 3D microlens arrays on arbitrary substrates.

Keywords: 3D microlens array; 3D micromachining; microinjection molding

OCIS codes: 220.0220; 120.4610; 130.3990; 160.5470; 220.4000; 230.3990

References

  • [1]

    N. Franceschini, J. M. Pichon and C. Blanes, Phil. Trans. Biol. Sci. 337, 283–294 (1992).Google Scholar

  • [2]

    W. C. Goltsos and M. Holz, Optical Eng. 29, 1392–1397 (1990).Google Scholar

  • [3]

    J. S. Leggatt and M. C. Hutley, Electron. Lett. 27, 238–240 (1991).CrossrefGoogle Scholar

  • [4]

    M. Levoy, R. Ng, M. Footer, A. Adams and M. Horowitz, Proc. ACM SIGGRAPH 25, 1–11 (2006).Google Scholar

  • [5]

    X. Shen, L. Pan and L. Lin, Sens. Actuat. 97–98, 428–433 (2002).Google Scholar

  • [6]

    N. F. Borrelli, D. L. Morse, R. H. Bellman and W. L. Morgan, Appl. Optics 24, 2520–2525 (1985).CrossrefGoogle Scholar

  • [7]

    D. M. Hartmann, O. Kibar and S. C. Esener, Optical Lett. 25, 975–977 (2000).Google Scholar

  • [8]

    E. Roy, B. Voisin, J. F. Gravelb, R. Peytavic, D. Boudreau etal., Microelectron. Eng. 86, 2255–2261 (2009).Google Scholar

  • [9]

    J. Tong, C. A. Simmons and Y. Sun, J. Micromech. Microeng. 18, 037004 (2008).CrossrefGoogle Scholar

  • [10]

    C. Beuret, G. A. Racine, J. Gobet, R. de Luthier and N. F. Rooij, Proc. IEEE Int. Conf. Micro Electro Mechan. Syst. 81–85 (1994).Google Scholar

  • [11]

    T. Dillon, M. Zablocki, S. Shi, J. Murakowski and D. Prather, Proc. SPIE 6882, 1–10 (2008).Google Scholar

  • [12]

    T. Bourounia, T. Masuzawa and H. Fujita, J. Microelectromech. Syst. 13, 190–199 (2004).Google Scholar

  • [13]

    O. Lima, L. Tan, A. Goel, Z. Li and M. Negahban, J. Vacuum Sci. Technol. B 25, 2412–2418 (2007).CrossrefGoogle Scholar

  • [14]

    H. O. Jacobs, A.R. Tao, A. Schwartz, D. H. Gracias and G. M. Whitesides, Science 296, 323–325 (2002).Google Scholar

  • [15]

    D. Zhu, C. Li, X. Zeng and H. Jiang, Appl. Phys. Lett. 16, 081111 (2010).CrossrefGoogle Scholar

  • [16]

    Y. Zhao, W. Huang and H. Purnawali, Appl. Mechan. Mater. 161, 292–295 (2012).Google Scholar

  • [17]

    Y. Zhao, C. Wang, W. Huang, H. Purnawali and L. An, Optics Expr. 19, 26000–26005 (2011).CrossrefGoogle Scholar

  • [18]

    L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, etal., J. Optics 13, 055407 (2011).Google Scholar

  • [19]

    P. He, F. Wang, L. Li, K. Georgiadis, O. Dambon, etal., Optics 13, 085703 (2011).Google Scholar

  • [20]

    A. Y. Yi and L. Li, Optics Lett. 30, 1707–1709 (2005).Google Scholar

  • [21]

    L. Li and A. Y. Yi, J. Micromech. Microeng. 19, 105010 (2009).CrossrefGoogle Scholar

  • [22]

    F. Fang, X. Zhang and X. Hu, Optics Expr. 16, 7323–7329 (2008).CrossrefGoogle Scholar

  • [23]

    G. E. Davis, J. W. Roblee and A. R. Hedges, Proc. SPIE 7426, 742605 (2009).Google Scholar

  • [24]

    S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, etal., Optical Expr. 19, 23938–23951 (2011).CrossrefGoogle Scholar

  • [25]

    H. Zhang, L. Li, D. McCray, D. Yao and A.Y. Yi, Sens. Actuat. A Phys. 179, 242–250 (2012).Google Scholar

  • [26]

    C. Yang, L. Su, C. Huang, H. Huang, J. Castro, A. Y. Yi, Adv. Polym. Technol. 30, 51–61 (2011).Google Scholar

  • [27]

    L. Li, C. Yang, H. Shi, W. Liao, H. Huang, etal., Polym. Eng. Sci. 50, 1594–1604 (2010).Google Scholar

  • [28]

    B. K. Lee, D. S. Kim and T. H. Kwon, Microsyst. Technol. 10, 531–535 (2004).Google Scholar

  • [29]

    L. S. Turng, M. Peic and D. K. Bradley, J. Inject. Mold. Technol. 6, 143–155 (2002).Google Scholar

  • [30]

    T. Maruyama, Y. Noro and M. Muranaka, Kobunshi Ronbunshu 45, 625–632 (1988).CrossrefGoogle Scholar

  • [31]

    O. Falkenstörfer and J. Schwider, Optical Eng. 34, 2972–2975 (1995).Google Scholar

  • [32]

    J. Schwider and H. Sickinger, Optik (Stuttg.) 107, 26–34 (1997).Google Scholar

  • [33]

    H. Sickinger, J. Schwider and B. Manzke, Optik (Stuttg.) 110, 239–243 (1999).Google Scholar

  • [34]

    L. Li and A. Y. Yi, J. Optics Soc. Am. 27, 2613–2620 (2010).Google Scholar

About the article

Corresponding author: Allen Y. Yi, Department of Integrated Systems Engineering, The Ohio State University, 210 Baker Systems, 1971 Neil Ave, Columbus, OH 43210, USA


Received: 2012-10-06

Accepted: 2013-03-03

Published Online: 2013-04-02

Published in Print: 2013-06-01


Citation Information: Advanced Optical Technologies, Volume 2, Issue 3, Pages 257–268, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2012-0061.

Export Citation

©2013 by THOSS Media & De Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rongrong Sun, Mojtaba Falahati, and Lei Li
Journal of Micromechanics and Microengineering, 2018, Volume 28, Number 11, Page 115005
[2]
Hui Li, Likai Li, Neil J. Naples, Jeffrey W. Roblee, and Allen Y. Yi
Frontiers of Mechanical Engineering, 2017, Volume 12, Number 2, Page 181
[3]
Rongrong Sun, Lingqian Chang, and Lei Li
Journal of Micromechanics and Microengineering, 2015, Volume 25, Number 11, Page 115012

Comments (0)

Please log in or register to comment.
Log in