Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael

CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.499
Source Normalized Impact per Paper (SNIP) 2018: 1.346

In co-publication with THOSS Media GmbH

See all formats and pricing
More options …
Volume 2, Issue 5-6


Laser gated viewing at ISL for vision through smoke, active polarimetry, and 3D imaging in NIR and SWIR wavelength bands

Martin Laurenzis
  • Corresponding author
  • French-German Research Institute of Saint-Louis (ISL), 5 Rue du General Cassagnou, 68301 Saint-Louis, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frank Christnacher
  • French-German Research Institute of Saint-Louis (ISL), 5 Rue du General Cassagnou, 68301 Saint-Louis, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-02 | DOI: https://doi.org/10.1515/aot-2013-0040


In this article, we want to give a review on the application of laser gated viewing for the improvement of vision cross-diffusing obstacles (smoke, turbid medium, …), the capturing of 3D scene information, or the study of material properties by polarimetric analysis at near-infrared (NIR) and shortwave-infrared (SWIR) wavelengths. Laser gated viewing has been studied since the 1960s as an active night vision method. Owing to enormous improvements in the development of compact and highly efficient laser sources and in the development of modern sensor technologies, the maturity of demonstrator systems rose during the past decades. Further, it was demonstrated that laser gated viewing has versatile sensing capabilities with application for long-range observation under certain degraded weather conditions, vision through obstacles and fog, active polarimetry, and 3D imaging.

Keywords: 3D imaging; active polarimetry; laser gated viewing; laser speckle reduction; range gating; vision through obstacles; OCIS code: 110.0110


  • [1]

    L. F. Gillespie, JOSA 56, 883–887 (1966).Google Scholar

  • [2]

    H. Steingold and R.E. Strauch, Appl. Opt. 8, 147–154 (1969).CrossrefGoogle Scholar

  • [3]

    C. W. Lamberts, Appl. Opt. 15, 1284–1289 (1976).PubMedGoogle Scholar

  • [4]

    I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, et al., Proc. SPIE 6940, 6902L (2008).Google Scholar

  • [5]

    P. F. McManamon, Opt. Eng. 51, 060901 (2012).Google Scholar

  • [6]

    O. David, R. Schneider and R. Israeli, Proc. SPIE 7482, 748203 (2009).Google Scholar

  • [7]

    O. Steinvall, M. Elmqvist, T. Chevalier and O. Gustafsson, Appl. Opt. 52, 4763–4778 (2013).CrossrefGoogle Scholar

  • [8]

    Obzerv Inc., 400 Jean-Lesage, Québec Qc, Canada, http://www.obzerv.com/.

  • [9]

    Intevac, Inc., 3560 Bassett Street, Santa Clara, CA 95054, USA, http://www.intevac.com/.

  • [10]

    Selex ES Ltd., Christopher Martin Road, Basildon, Essex, SS14 3EL, UK, http://www.selex-es.com/.

  • [11]

    Elbit Systems Ltd., P.O.B 539, Haifa 31053, Israel, http://www.elbitsystems.com/.

  • [12]

    O. Steinvall, H. Olsson, G. Bolander, C. Carlsson and D. Letalick, Proc. SPIE 3707, 432–448 (1999).Google Scholar

  • [13]

    R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halford and K. J. Barnard, Opt. Eng. 42, 738–746 (2003).CrossrefGoogle Scholar

  • [14]

    O. Steinvall, H. Larsson, F. Gustafsson, T. Chevalier, A. Persson, et al., Proc. SPIE 5613, 51–66 (2004).Google Scholar

  • [15]

    R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen and D. H. Tofsted, Opt. Exp. 15, 3816–3832 (2007).CrossrefGoogle Scholar

  • [16]

    D. Bonnier, S. Lelievre and L. Demers, Proc. SPIE 6206, 62060A (2006).Google Scholar

  • [17]

    D. Dayton, S. Browne, J. Gonglewski, S. Sandven, J. Gallegos, et al., Opt. Eng. 40, 1001–1009 (2001).Google Scholar

  • [18]

    O. Steinvall, M. Elmqvist and H. Larsson, Proc. SPIE 8186, 818605 (2011).Google Scholar

  • [19]

    O. Steinvall, T. Chevalier, P. Andersson and M. Elmqvist, Proc. SPIE 6542, 654218 (2007).Google Scholar

  • [20]

    O. Steinvall, P. Andersson, M. Elmqvist and M. Tulldahl, Proc. SPIE 6542, 654216 (2007).Google Scholar

  • [21]

    G. R. Fournier, D. Bonnier, J. L. Forand and P. Pace, Opt. Eng. 32, 2185–2190 (1993).CrossrefGoogle Scholar

  • [22]

    E. A. McLean, H. R. Burris, Jr. and M. P. Strand, Appl. Opt. 34, 4343–4351 (1995).CrossrefGoogle Scholar

  • [23]

    J. Busck, Opt. Eng. 44, 116001 (2005).Google Scholar

  • [24]

    M. Laurenzis, F. Christnacher, E. Bacher, N. Metzger, S. Schertzer, et al., Proc. SPIE 8186, 818603 (2011).Google Scholar

  • [25]

    M. Laurenzis, F. Christnacher, D. Monnin and T. Scholz, Opt. Eng. 51, 061303 (2012).CrossrefGoogle Scholar

  • [26]

    E. Belin, F. Christnecher, F. Taillade and M. Laurenzis, Proc. SPIE 7088, 70880O (2008).Google Scholar

  • [27]

    O. David, N. S. Kopeika and B. Weizer, Appl. Opt. 45, 7248–7254 (2006).CrossrefGoogle Scholar

  • [28]

    F. Christnacher, J.-M. Poyet, M. Laurenzis, J.-P. Moeglin and F. Taillade, Proc. SPIE 7675, 76750J (2010).Google Scholar

  • [29]

    S. Breugnot and P. Clemenceau, Opt. Eng. 39, 2681–2688 (2000).CrossrefGoogle Scholar

  • [30]

    M. A. Miller, R. V. Blumer, and J. D. Howe, Proc. SPIE 4481, 87–99 (2002).Google Scholar

  • [31]

    D. A. Lavigne, M. Breton, M. Pichette, V. Larochelle and J. R. Simard, Proc. SPIE 6972, 69720x (2008).Google Scholar

  • [32]

    M. Alouini, F. Goudil, A. Grisard, J. Bourderionnet, D. Dolfi, et al., Appl. Opt. 48, 1610–1618 (2009).CrossrefGoogle Scholar

  • [33]

    M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk and J. M. Poyet, Opt. Eng. 51, 061302 (2012).CrossrefGoogle Scholar

  • [34]

    J. Busck and H. Heiselberg, Appl. Opt. 43, 4705–4710 (2004).CrossrefGoogle Scholar

  • [35]

    P. Andersson, Opt. Eng. 45, 034301 (2006).Google Scholar

  • [36]

    E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler et al., Appl. Opt. 48, 5956–5969 (2009).CrossrefGoogle Scholar

  • [37]

    B. Göhler and P. Lutzmann, Proc. SPIE 8542, 854205 (2012).Google Scholar

  • [38]

    D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz. 3DPVT, IEEE Computer Society 938–945 (2006).Google Scholar

  • [39]

    M. Laurenzis, F. Christnacher and D. Monnin, Opt. Let. 32, 3146–3148 (2007).CrossrefGoogle Scholar

  • [40]

    X. Zhang and H. Yan, Appl. Opt. 50, 1682–1686 (2011).CrossrefGoogle Scholar

  • [41]

    M. Laurenzis and E. Bacher, Appl. Opt. 50, 3824–3828 (2011).CrossrefGoogle Scholar

  • [42]

    M. Laurenzis, E. Bacher, S. Schertzer and F. Christnacher, Proc. SPIE 8186, 818604 (2011).Google Scholar

  • [43]

    Y. Lutz, “Device for collimating a high-brightness laser diode array” patent: FR2845776/US2004165643/DE10341531.Google Scholar

  • [44]

    Y. Lutz, “Illuminateur laser/Uniform illumination apparatus”, patent: EP1712940/FR2884621/US2007019912.Google Scholar

  • [45]

    “Safety of laser products – part 1: Equipment classification and requirements”, European norm: EN 60825-1, CENELEC, Brussels.Google Scholar

  • [46]

    B. Göhler, P. Lutzmann, G. Anstett, Proc. SPIE 7113, 711307 (2008).Google Scholar

About the article

Martin Laurenzis

Martin Laurenzis obtained his MSc in Physics from the University of Dortmund (Germany) and his PhD in Electrical Engineering and Information Technology from the University of Aachen (Germany). He is specialized in the area of night vision systems and active imaging with a particular interest in vision in poor weather conditions. He is currently developing new 3D techniques and new theoretical tools for performance evaluation of 3D active imaging systems.

Frank Christnacher

Frank Christnacher received his MSc and his PhD from the University of Haute-Alsace (France) in the field of Optical Data Processing and Pattern Recognition. He is currently the head of the Optronics and On-Board Visionics group of the French-German Research Institute of Saint-Louis. Specialized in the area of night vision imaging systems and active imaging, he is particularly interested in long-distance vision and in vision in degraded weather conditions. He initiated and led numerous international scientific collaborations.

Corresponding author: Martin Laurenzis, French-German Research Institute of Saint-Louis (ISL), 5 Rue du General Cassagnou, 68301 Saint-Louis, France, e-mail:

Received: 2013-07-12

Accepted: 2013-08-29

Published Online: 2013-10-02

Published in Print: 2013-12-01

Citation Information: Advanced Optical Technologies, Volume 2, Issue 5-6, Pages 397–405, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2013-0040.

Export Citation

©2013 by THOSS Media & De Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jean-Michel Poyet and Yves Lutz
Optical Engineering, 2016, Volume 55, Number 7, Page 075103

Comments (0)

Please log in or register to comment.
Log in