Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael


CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.499
Source Normalized Impact per Paper (SNIP) 2018: 1.346

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

High-end spectroscopic diffraction gratings: design and manufacturing

Tilman Glaser
  • Corresponding author
  • Microstructured Optics/Grating Production, Carl Zeiss Jena GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/aot-2014-0063

Abstract

Diffraction gratings are key components for spectroscopic systems. For high-end applications, they have to meet advanced requirements as, e.g., maximum efficiency, lowest possible scattered light level, high numerical aperture, and minimal aberrations. Diffraction gratings are demanded to allow spectrometer designs with highest resolution, a maximal étendue, and minimal stray light, built within a minimal volume. This tutorial is intended to provide an overview of different high-end spectroscopic gratings, their theoretical design and manufacturing technologies.

Keywords: Carl gratings; concave aberration-corrected gratings; diffraction efficiency; diffraction gratings; interference lithography; replication; scattering; stray light; volume holographic gratings

References

  • [1]

    D. Rittenhouse, Trans. Amer. Phil. Soc. 2, 201–206 (1786).Google Scholar

  • [2]

    G. W. Stroke, in ‘Diffraction gratings’, ‘Handbuch der Physik’, volume 29, Ed. By S. Flügge (Springer–Verlag, Berlin, Heidelberg, 1967) pp. 426–754.Google Scholar

  • [3]

    M. P. Chrisp, in ‘Aberration-Corrected Holographic Gratings and Their Mountings’, volume X (Academic Press, San Diego, 1987) pp. 391–454.Google Scholar

  • [4]

    M. Born and E. Wolf, in ‘Principles of Optics’, 6 edition (Cambridge University Press, Cambridge, 1997).Google Scholar

  • [5]

    E. G. Loewen and E. Popov, in ‘Diffraction gratings and applications’, (CRC Press, New York, 1997).Google Scholar

  • [6]

    O. Sandfuchs, C. Schwanke, M. Burkhardt, F. Wyrowski, A. Gatto, et al., J. Eur. Opt. Soc. 6, 11006 (2011).CrossrefGoogle Scholar

  • [7]

    T. Glaser, S. Schröter, S. Fehling, R. Pöhlmann and M. Vlček, Electron. Lett. 40(3), 176–177 (2004).CrossrefGoogle Scholar

  • [8]

    E. B. Burgh, M. A. Bershady, K. B. Westfall and K. H. Nordsieck, Publ. Astron. Soc. Pac. 119, 1069–1082 (2007).CrossrefGoogle Scholar

  • [9]

    R. Brunner, M. Burkhardt, K. Rudolf and N. Correns, Opt. Exp. 16(16), 12239–12250 (2008).CrossrefGoogle Scholar

  • [10]

    M. Burkhardt, R. Fechner, L. Erdmann, F. Frost, R. Steiner, et al., in ‘DGaO-Proc, Erlangen-Nürnberg’, 113, A3 (2012). ISSN: 1614 8436, URN:NBN:DE:0287 2012 A003 6.Google Scholar

  • [11]

    A. Gatto, A. Pesch, L. H. Erdmann, M. Burkhardt, A. Kalies, et al., in ‘Sensors, Systems, and Next-Generation Satellites XVIII’, Eds. By Pantazis Mouroulis and Thomas S. Pagano (SPIE, San Diego, 2014) pp. 1J–1.Google Scholar

  • [12]

    R. Hultzsch, Photonik (3), 40–41 (1998).Google Scholar

  • [13]

    C. G. Bernhard, Endeavour 26, 79–84 (1967).Google Scholar

  • [14]

    J. v. Fraunhofer. Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel denselben zuvor zu kommen (1817, unpublished). Kunst- und Gewerbeblatt des Polytechnischen Vereins für das Königreich Bayern 52, 1–19 (1866).Google Scholar

  • [15]

    H. D. Taylor, A method of increasing the brillancy of the images formed by lenses, 1904. Patent No GB 29.561.Google Scholar

  • [16]

    A. Smakula, Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile. Patent No DE 685767, 1. November 1935.Google Scholar

  • [17]

    M. J. Minot, J. Opt. Soc. Am. 66(6), 515–519 (1976).CrossrefGoogle Scholar

  • [18]

    C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, et al., Nanotechnology 21(42), 425301 (2010).CrossrefGoogle Scholar

  • [19]

    M. Schulze, H.-J. Fuchs, E.-B. Kley and A. in ‘MOEMS-MEMS 2008 Micro and Nanofabrication’, Eds. By Thomas J. Suleski, Winston V. Schoenfeld and Jian J. Wang (SPIE, San Jose, 2008) pp. 68830N.Google Scholar

  • [20]

    T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, et al., Microsyst. Technol. 11(2–3), 86–90 (2005).Google Scholar

  • [21]

    ORAFOL, Fresnel Optics GmbH. http://www.orafol.com, 2014.

  • [22]

    R. Brunner and H. Dobschal, in ‘Diffractive Optical Lenses in Imaging Systems – High-Resolution Microscopy and Diffractive Solid Immersion Systems’, chapter 3 (Springer, Berlin, Heidelberg, 2007) pp. 45–70.Google Scholar

  • [23]

    R. Brunner, R. Steiner, K. Rudolf and H.-J. Dobschal, in ‘Gradient Index, Miniature, and Diffractive Optical Systems III’, SPIE 5177, 9–15 (2003).Google Scholar

  • [24]

    R. Brunner, Adv. Opt. Technol. 2(5–6), 351–359 (2013).Google Scholar

  • [25]

    C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. (A) 2, 406–412 (1935).Google Scholar

  • [26]

    H. Kogelnik, Bell Sys. Tech. J. 48(9), 2909–2947 (1969).Google Scholar

  • [27]

    R. Extermann and G. Wannier, Helv. Phys. Acta 9, 520–532 (1936).Google Scholar

  • [28]

    M. A. Golub and A. A. Friesem, J. Opt. Soc. Am. A 24(3), 687–695 (2007).CrossrefGoogle Scholar

  • [29]

    M. Rumpel, M. Moeller, C. Moormann, A. Voss, T. Graf, et al., in, Advanced Solid State Lasers ATh1A–7 (2013).Google Scholar

  • [30]

    J. Weiner, Rep. Prog. Phys. 72(064401), 1–19 (2009).CrossrefGoogle Scholar

  • [31]

    T. Glaser, in ‘Modeling Aspects in Optical Metrology’, Eds. H. Bosse, B. Bodermann and R. M. Silver (SPIE, München, 2007) pp. 41.Google Scholar

  • [32]

    J. Dyson, J. Opt. Soc. Am. 49(7), 713–715 (1959).CrossrefGoogle Scholar

  • [33]

    A. Offner, Unit power imaging catoptric anastigmat, 1973. US patent 3,748,015.Google Scholar

  • [34]

    L. Mertz, Appl. Opt. 16(12): 3122–3124, 1977.CrossrefGoogle Scholar

  • [35]

    O. v. Littrow, Abtheilung 47(105), 26–32 (1863).Google Scholar

  • [36]

    A. Davis. Stray light in czerny-turner monochromators (master’s degree paper). http://artdavis.wdfiles.com/local–files/optics-papers/Stray-light-in-Czerny-Turner-monochromators_Davis.pdf. see also: A. Davis and K. McNallie, US patent 6,414,753, 2002.

  • [37]

    P. H. A. Rowland, Philos. Mag. 13(84), 469–474 (1882).Google Scholar

  • [38]

    H. A. Rowland, Philos. Mag. 16(99), 210 (1883).Google Scholar

  • [39]

    C. Runge and F. Paschen, in ‘Über die Strahlung des Quecksilbers im magnetischen Felde’ (Berlin, Verlag der Königlichen Preussischen Akademie der Wissenschaften, 1902) pp. 1–18.Google Scholar

  • [40]

    A. Labeyrie and J. Flamand, Opt. Commun. 1(1), 5–8 (1969).Google Scholar

  • [41]

    R. Güther and S. Polze, Optica Acta, 29(5), 659–665 (1982).CrossrefGoogle Scholar

  • [42]

    J. Cordelle, J. Flamand, G. Pieuchard and A. Labeyrie, in ‘Aberration-Corrected Concave Gratings Made Holographically’, (Oriel Press, Newcastle upon Tyne, 1970) pp. 117–124.Google Scholar

  • [43]

    R. Bittner, Optik 64(3), 185–199 (1983).Google Scholar

  • [44]

    O. Wiener, Ann. Phys. 276(6), 203–243 (1890).Google Scholar

  • [45]

    A. A. Michelson, Proc. Am. Philos. Soc. LIV(217), 137–142 (1915).Google Scholar

  • [46]

    R. Ritschl and S. Polze, Optik 15(2/3), 127–131 (1958).Google Scholar

  • [47]

    H. Nagata and M. Kishi, Jpn. J. Appl. Phys. 14(S1), 181–186 (1975).Google Scholar

  • [48]

    N. K. Sheridon, Appl. Phys. Lett. 12(9), 316–318 (1968).CrossrefGoogle Scholar

  • [49]

    J. Flamand, F. Bonnemason, A. Thevenon and J. M. Lerner, in ‘Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology’, Eds. By Fran Adar, James E. Griffiths and Jeremy M. Lerner (SPIE, Los Angeles, 1989) pp. 288–294.Google Scholar

  • [50]

    M. Breidne, S. Johansson, L.-E. Nilsson and H. Åhlèn, Opt. Acta 26(11), 1427–1441 (1979).Google Scholar

  • [51]

    R. Fechner, A. Schindler, D. Hirsch, T. Gase, R. Weigelt, et al., in ‘10th Microoptics Conference MOC 04’, (Springer, Jena, 2004) pp. F–16.Google Scholar

  • [52]

    P. Kröplin, Jenaer Jahrbuch zur Technik- und Industriegeschichte 170–209 (2000).Google Scholar

  • [53]

    D. W. Wilson, R. E. Muller, P. M. Echternach and J. P. Backlund, in ‘Micromachining Technology for Micro-Optics and Nano-Optics III’, Eds. E. G. Johnson, G. P. Nordin and T. J. Suleski, SPIE, San Jose, 5720, 68–77 (2005).Google Scholar

  • [54]

    M. Cumme and A. Deparnay, Adv. Opt. Technol. 4, 47–61 (2015).Google Scholar

  • [55]

    M. A. Gully-Santiago, D. T. Jaffe, C. B. Brooks, D. W. Wilson and R. E. Muller in ‘Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation’, Eds. R. Navarro, C. R. Cunningham, and A. A. Barto, SPIE, 9151, 91515K–91515K–13, Montréal (2014).Google Scholar

  • [56]

    J. Fraunhofer, Ann. Phys. 74(8), 337–378 (1823).Google Scholar

  • [57]

    G. L. Turner and S. Bradbury, J. R. Microsc. Soc. 85(4), 435–447 (1966).CrossrefGoogle Scholar

  • [58]

    B. H. Kleemann. Elektromagnetische Analyse von Oberflächengittern von IR bis XUV mittels einer parametrisierten Randintegralmethode: Theorie, Vergleich und Anwendungen. PhD thesis, Technische Universität Ilmenau, Germany (2002).Google Scholar

  • [59]

    PCGrate. http://www.pcgrate.com, 2014.

  • [60]

    unigit. http://www.unigit.com, 2014.

  • [61]

    JCMwave. http://www.jcmwave.com, 2014.

  • [62]

    WIAS-DiPoG. http://www.wias-berlin.de/software/DIPOG, 2014.

  • [63]

    VirtualLab. http://www.lighttrans.com, 2014.

  • [64]

    GSolver. http://www.gsolver.com, 2014.

  • [65]

    B. H. Kleemann, A. Mitreiter and F. Wyrowski, J. Mod. Opt. 43(7): 1323–1349 (1996).CrossrefGoogle Scholar

  • [66]

    T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs and E.-B. Kley, Appl. Opt. 41(18), 3558–3566, 2002.CrossrefGoogle Scholar

  • [67]

    M. Breidne and D. Maystre, Appl. Opt. 19(11), 1812–1821 (1980).CrossrefGoogle Scholar

  • [68]

    E. D. Palik. ‘Handbook of optical constants of solids’ (Academic Press, Boston, 1998).Google Scholar

  • [69]

    D. E. Gray. ‘American Institute of Physics Handbook’ (McGraw-Hill, New York, 1982).Google Scholar

  • [70]

    A. Maréchal and G. W. Stroke, C. R. Hebd. Séances Acad. Sci. 249(20), 2042–2044 (1959).Google Scholar

  • [71]

    B. H. Kleemann, Opt. Lett. 37(7), 1–3 (2012).Google Scholar

  • [72]

    F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg and T. Limperis, Geometrical considerations and nomenclature for reflectance. US Department of Commerce, National Bureau of Standards Washington, D. C (1977).Google Scholar

  • [73]

    FRED. http://photonengr.com, 2014.

  • [74]

    R. Steiner, A. Pesch, L. H. Erdmann, M. Burkhardt, A. Gatto, et al., in ‘Imaging Spectrometry XVIII’, Eds. by Pantazis Mouroulis and Thomas S. Pagano (SPIE, San Diego, 2013) pp. 0H–1.Google Scholar

  • [75]

    J. C. Stover, in ‘Optical Scattering: Measurement and Analysis’ (SPIE Optical Engineering Press, Bellingham, Washington, 3 edition, 2012).Google Scholar

  • [76]

    M. R. Sharpe and D. Irish, Opt. Acta 25(9), 861–893 (1978).Google Scholar

  • [77]

    F. Snik, J. H. Rietjens, A. Apituley, H. Volten, B. Mijling, et al., Geophys. Res. Lett. 41(20), 7351–7358 (2014).CrossrefGoogle Scholar

  • [78]

    TellSpec. https://www.indiegogo.com/projects/tellspec-what-s-in-your-food, 2013.

  • [79]

    Consumer Physics, Tel Aviv, Israel. https://www.consumerphysics.com/myscio/, 2014.

About the article

Tilman Glaser

Tilman Glaser is the head of the grating manufacture in the Carl Zeiss Jena GmbH, Jena, Germany. He studied at the Friedrich Schiller University (FSU) in Jena and at the Institut National des Sciences Appliquées (INSA) of Toulouse, France. He worked at the Institute for Physical High Technology IPHT in Jena in the area of grating design and manufacture from 1995 to 2004, and received his PhD degree in physics in 2000. From 2004 to 2007 he conducted research into multiple light beam light detection and ranging LIDAR systems for advanced driver assistance systems (ADAS) at Jenoptik LOS company. Since 2007 he has been working as a scientist in the microoptics group of the Zeiss company. His interests and experiences especially include design, fabrication and application of diffractive and refractive micro-optical elements.


Corresponding author: Tilman Glaser, Microstructured Optics/Grating Production, Carl Zeiss Jena GmbH, Carl-Zeiss-Promenade 10, 07745 Jena, Germany, e-mail:


Received: 2014-11-21

Accepted: 2015-01-08

Published Online: 2015-02-06

Published in Print: 2015-02-01


Citation Information: Advanced Optical Technologies, Volume 4, Issue 1, Pages 25–46, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2014-0063.

Export Citation

©2015 THOSS Media & De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in