Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael


CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.499
Source Normalized Impact per Paper (SNIP) 2018: 1.346

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 5, Issue 3

Issues

Simulation of imperfections in plastic lenses – transferring local refractive index changes into surface shape modifications

Josep Arasa
  • Corresponding author
  • Center for Sensors Instruments and Systems Development (CD6), Universitat Politécnica de Catalunya, Rambla de Sant Nebridi 10, E08222 Terrassa, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carles Pizarro
  • Center for Sensors Instruments and Systems Development (CD6), Universitat Politécnica de Catalunya, Rambla de Sant Nebridi 10, E08222 Terrassa, Spain
  • SnellOptics™, Carrer Sant Quirze 91,5e2a. E08221 Terrassa, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patricia Blanco
  • Center for Sensors Instruments and Systems Development (CD6), Universitat Politécnica de Catalunya, Rambla de Sant Nebridi 10, E08222 Terrassa, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-06 | DOI: https://doi.org/10.1515/aot-2016-0024

Abstract

Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

Keywords: free-form surfaces; index variations; optomechanical design; plastic lenses; polarization

References

  • [1]

    Thorlabs, generic optical supplier, Available at: http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=16.

  • [2]

    G-S plastic Optics, plastic optic supplier, Available at: http://gsoptics.com/product/index.php.

  • [3]

    K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa and Y. Souma, Proc. SPIE 6502, 650203 (2007).Google Scholar

  • [4]

    Ledil, plastic optic supplier, Available at: http://www.ledil.fi/.

  • [5]

    Neotronic, illumination supplier, Available at: http://www.neotronic.com/EN/kathod-lenses-for-power-leds.html.

  • [6]

    Carclo, plastic optic supplier, Available at: http://www.carclo-optics.com/.

  • [7]

    P. Obreja, P. Cristea, A. Dinescu and R. Rebigan, Proc. Eur. Opt. Soc. Annu. Meet. 2010 (EOSAM 2010) (Parc Floral de Paris, France, 2010).

  • [8]

    D. Cristea, P. Obreja, A. Dinescu, G. Konstantinidis, R. Rebigan et al., Proceedings of 4M Conference,- eds. B.Fillon, C.Khan-Malek, S. Dimov, Research Publishing, 263–266 (2010), doi:10.3850/978-981-08-6555-9.168.CrossrefGoogle Scholar

  • [9]

    M. Kusko, C. Kusko and D. Cristea, 2nd EOS Conference on Manufacturing of Optical Components (EOSMOC 2011) at the World of Photonics Congress, Munich, Germany, 23–25 May 2011.Google Scholar

  • [10]

    P. T. Tang, R. Sobiecki, M. Hansen, C. Ravn and C. Baum, ICOMM proceedings, Tokyo, March 2011, pp. 431–435.

  • [11]

    H. Suhara, Appl. Opt. 41, 5317–5325 (2002).Google Scholar

  • [12]

    Y.-L. Chen, H.-C. Hsieh, W.-T. Wu, W.-Y. Chang and D.-C. Su, Appl. Opt. 49, 6888–6892 (2010).Google Scholar

  • [13]

    J. Arasa, D. Mayershofer and J. Romero, Proc. SPIE 9525, ISBN: 9781628416855 (2015).

  • [14]

    N. Domínguez, D. Mayershofer, C. Garcia and J. Arasa, Opt. Eng. 55, 024102 (2016).Google Scholar

  • [15]

    G. Farin, ‘Curves and Surfaces for CAGD’ 5th ed. (Morgan Kaufmann, San Francisco, 2002).Google Scholar

  • [16]

    P. Jester, C. Menke and K. Urban, Appl. Opt. 50, 822–828 (2011).Google Scholar

  • [17]

    B. Narasimhan, P. Benitez, J. C. Miñano, J. Chaves, D. Grabovickic, et al., Proc. SPIE. 9629, Optical Systems Design 2015: Illumination Optics IV, 96290C. (2015) .Crossref

  • [18]

    G. Farin and D. Hansford, ‘The essentials of CAGD’ (AK Peters, Ltd. Publishers 2000).Google Scholar

  • [19]

    LightPath Technologies, 2603 Challenger Tech Court, Suite 100, Orlando, USA, Available at: http://www.lightpath.com/.

  • [20]

    Zemax, LLC, 10230 NE Points Dr. Suite 540, Kirkland, WA 98033 USA, Available at: http://www.zemax.com/.

  • [21]

    S. C. Chapra and R P. Canale, ‘Numerical methods for engineers’ 6th ed. (McGraw-Hill, New York, 2010).Google Scholar

  • [22]

    C. de Boor. ‘A practical guide to splines’ (Springer Verlag, New York, 2001).Google Scholar

  • [23]

    J. A. Nelder and R. Mead, Comput. J. 7, 308–313 (1965).Google Scholar

  • [24]

    Y. S. Kim and ‘Refined simplex method for data fitting’ Astronomical Data Analysis Software and Systems VI, A.S.P. Conference Series, Vol. 125, Eds. Gareth Hunt and H. E. Payne (1997) p. 206.Google Scholar

About the article

Received: 2016-04-15

Accepted: 2016-06-07

Published Online: 2016-07-06

Published in Print: 2016-06-01


Citation Information: Advanced Optical Technologies, Volume 5, Issue 3, Pages 249–258, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2016-0024.

Export Citation

©2016 THOSS Media & De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in