Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael

6 Issues per year


CiteScore 2017: 1.31

SCImago Journal Rank (SJR) 2017: 0.530
Source Normalized Impact per Paper (SNIP) 2017: 1.268

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 6, Issue 3-4

Issues

Challenges of anamorphic high-NA lithography and mask making

Stephen D. Hsu / Jingjing Liu
Published Online: 2017-06-08 | DOI: https://doi.org/10.1515/aot-2017-0024

Abstract

Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV ‘Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI’, (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative ‘attenuated SRAF’ to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.

Keywords: anamorphic imaging; attenuated assist features; CDU; edge placement error (EPE); EUV high-NA; mask error factor (MEF); mask-manufacturing rule check (MRC); mask writing; MEF tenor; source mask optimization (SMO); sub-resolution assist feature (SRAF)

References

  • [1]

    B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 977602 (2016) doi: 10.1117/12.2225014.Google Scholar

  • [2]

    A. Lio, in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97760V (2016) doi: 10.1117/12.2225017.Google Scholar

  • [3]

    O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022.Google Scholar

  • [4]

    S. Raghunathan, G. McIntyre, G. Fenger, O. Wood, in ‘Proc. SPIE8679, Extreme Ultraviolet (EUV) Lithography IV’, vol. 867918 (2013) doi: 10.1117/12.2011643.Google Scholar

  • [5]

    S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV ‘Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI’, (2015) doi: 10.1117/12.2086074.CrossrefGoogle Scholar

  • [6]

    B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94221G (2015) doi: 10.1117/12.2175488.Google Scholar

  • [7]

    J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150.Google Scholar

  • [8]

    M. Burkhardt, A. Raghunathan, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220X (2015) doi: 10.1117/12.2085948.Google Scholar

  • [9]

    J. Fung Chen, T. Laidig, K. E. Wampler, R. Caldwell, J. Vac. Sci. Technol. B 15, 2426–2433 (1997).Google Scholar

  • [10]

    H. Kang, in ‘Proc. SPIE 7520, Lithography Asia 2009’, vol. 752037 (2009) doi: 10.1117/12.849556.Google Scholar

  • [11]

    A. Erdman, P. Evanschitzky, J. T. Neumann, P. Gräupner, in ‘Proc. SPIE 9426, Optical Microlithography XXVIII’, vol. 94260H (2015) doi: 10.1117/12.2086346.Google Scholar

  • [12]

    J. Finders, L. Winter, T. Last, J. Micro/Nanolith. MEMS MOEMS 15, 021408 (2016). doi: 10.1117/1.JMM.15.2.021408.CrossrefGoogle Scholar

  • [13]

    M. Burkhardt, G. McIntyre, R. Schlief, L. Sun, in ‘Proc. SPIE 9048, Extreme Ultraviolet (EUV) Lithography V’, vol. 904838 (2014) doi: 10.1117/12.2048311.Google Scholar

  • [14]

    D. Hsu, J. Liu, U.S. Application No. 62/322677 ‘Mapping of patterns between design layout and patterning device’ April 14, 2016.Google Scholar

About the article

Received: 2017-03-25

Accepted: 2017-05-08

Published Online: 2017-06-08

Published in Print: 2017-06-27


Citation Information: Advanced Optical Technologies, Volume 6, Issue 3-4, Pages 293–310, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2017-0024.

Export Citation

©2017 THOSS Media & De Gruyter, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in