Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael

6 Issues per year


CiteScore 2017: 1.31

SCImago Journal Rank (SJR) 2017: 0.530
Source Normalized Impact per Paper (SNIP) 2017: 1.268

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 7, Issue 1-2

Issues

Broadband and scalable optical coupling for silicon photonics using polymer waveguides

Antonio La Porta / Jonas Weiss / Roger Dangel / Daniel Jubin / Norbert Meier / Folkert Horst / Bert Jan Offrein
Published Online: 2018-02-21 | DOI: https://doi.org/10.1515/aot-2017-0064

Abstract

We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

Keywords: coupling; integration; optics; packaging; silicon photonics

References

  • [1]

    J. Weiss, R. Dangel, J. Hofrichter, F. Horst, D. Jubin, et al., Optical Interconnects for Disaggregated Resources in Future Datacenters, 2014 The European Conference on Optical Communication (ECOC) (Cannes, France, 2014).Google Scholar

  • [2]

    D. A. B. Miller and H. M. Ozaktas, J. Parallel Distrib. Comput. 41, 42–52 (1997).CrossrefGoogle Scholar

  • [3]

    Y. A. Vlasov, IEEE Commun. Mag. 50, 67–72 (2012).CrossrefGoogle Scholar

  • [4]

    C. R. Doerr, IEICE Trans. Electron. 96, 950–957 (2013).Google Scholar

  • [5]

    Y. Hibino, MRS Bull. 28, 365–371 (2003).CrossrefGoogle Scholar

  • [6]

    X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. T. Chen, IEEE J. Sel. Top. Quant. 19, 196–210 (2013).CrossrefGoogle Scholar

  • [7]

    P. A. Francese, T. Toifl, M. Braendli, C. Menolfi, M. Kossel, et al., 10.6 Continuous-Time Linear Equalization with Programmable Active-Peaking Transistor Arrays in a 14nm FinFET 2mW/Gb/s 16Gb/s 2-Tap Speculative DFE Receiver, IEEE ISSCC (San Francisco, CA, USA, 2015).Google Scholar

  • [8]

    CISCO, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020 (2016). Available at: https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf.

  • [9]

    InfiniBand Trade Association, InfiniBand® Roadmap. Available at: http://www.infinibandta.org/content/pages.php?pg=technology_overview, Accessed: 7/Feb/2018.

  • [10]

    A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, et al., Optics for High-Performance Servers and Supercomputers, OFC Conference (San Diego, CA, USA, 2010).Google Scholar

  • [11]

    S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, et al., A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications, IEDM (San Francisco, CA, USA, 2012).Google Scholar

  • [12]

    C. R. Doerr, Front. Phys. 3, 37 (2015).Google Scholar

  • [13]

    H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, et al., Opt. Express 23, 2487–2511 (2015).CrossrefGoogle Scholar

  • [14]

    R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, et al., J. Lightwave Technol. 31, 3915–3926 (2013).CrossrefGoogle Scholar

  • [15]

    R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, et al., Opt. Express 23, 4736–4750 (2015).CrossrefGoogle Scholar

  • [16]

    A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, et al., IEEE J. Sel. Top. Quant. 17, 597–608 (2011).CrossrefGoogle Scholar

  • [17]

    T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morisette, Y. Thibodeau, et al., A Metamaterial Converter Centered at 1490 nm for Interfacing Standard Fibers to Nanophotonic Waveguides, OFC, 2016 (Anaheim, CA, USA, 2016).Google Scholar

  • [18]

    P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, et al., Si Photonics Based High-Speed Optical Transceivers, ECOC (Amsterdam, The Netherlands, 2012).Google Scholar

  • [19]

    I. M. Soganci, A. La Porta, and B. J. Offrein, Opt. Express 21, 16075–16085 (2013).CrossrefGoogle Scholar

  • [20]

    T. Barwicz, Y. Taira, S. Takenobu, N. Boyer, A. Janta-Polczynski, et al., Optical Demonstration of a Compliant Polymer Interface between Standard Fibers and Nanophotonic Waveguides, OFC (CA, USA, 2015).Google Scholar

  • [21]

    A. La Porta, J. Weiss, R. Dangel, D. Jubin, N. Meier, et al., Silicon Photonics Packaging for Highly Scalable Optical Interconnects, ECTC (San Diego, CA, USA, 2015).Google Scholar

  • [22]

    A. La Porta, R. Dangel, D. Jubin, N. Meier, D. Chelladurai, et al., Scalable Optical Coupling between Silicon Photonics Waveguides and Polymer Waveguides, ECTC (Las Vegas, NV, USA, 2016).Google Scholar

  • [23]

    A. La Porta, R. Dangel, D. Jubin, F. Horst, N. Meier, et al., Optical Coupling between Polymer Waveguides and a Silicon Photonics Chip in the O-band, OFC (Anaheim, CA, USA, 2016).Google Scholar

About the article

Received: 2017-10-04

Accepted: 2018-01-24

Published Online: 2018-02-21

Published in Print: 2018-04-25


Citation Information: Advanced Optical Technologies, Volume 7, Issue 1-2, Pages 107–113, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2017-0064.

Export Citation

©2018 THOSS Media & De Gruyter, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in