Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael


CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.499
Source Normalized Impact per Paper (SNIP) 2018: 1.346

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Heat input and accumulation for ultrashort pulse processing with high average power

Johannes Finger
  • Corresponding author
  • Chair for Laser Technology, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
  • Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedikt Bornschlegel / Martin Reininghaus / Andreas Dohrn / Markus Nießen / Arnold Gillner
  • Chair for Laser Technology, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
  • Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinhart Poprawe
  • Chair for Laser Technology, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
  • Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-01 | DOI: https://doi.org/10.1515/aot-2018-0008

Abstract

Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

Keywords: burst; heat accumulation; materials processing; ultrafast; USP

References

  • [1]

    B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben and A. Tünnermann, Appl. Phys. A, 63, 109–115 (1996).CrossrefGoogle Scholar

  • [2]

    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., J. Opt. Soc. Am. B 14, 2716–2722 (1997).CrossrefGoogle Scholar

  • [3]

    S.-S Wellershoff, J. Hohlfeld, J. Güdde and E. Matthias, Appl. Phys. A 69, S99–S107 (1999).Google Scholar

  • [4]

    K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Proc. 12, 230–238 (2011).CrossrefGoogle Scholar

  • [5]

    B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, et al., Phys. Proc. 12, 164–171 (2011).CrossrefGoogle Scholar

  • [6]

    S. L. Campanelli, A. D. Ludovico, C. Bonserio, P. Cavalluzzi and M. Cinquepalmi, J. Mater. Process. Technol. 191, 220–223 (2007).CrossrefGoogle Scholar

  • [7]

    M. Henry, P. M. Harrison, I. Henderson and M. F. Brownell, Proc. SPIE 5662 (2004). Doi: 10.1117/12.596743.Google Scholar

  • [8]

    T. Eidam, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, et al., Opt. Lett. 35, 94 (2010).CrossrefGoogle Scholar

  • [9]

    P. Russbüldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, et al., Opt. Lett. 17, 12230–12245 (2009).Google Scholar

  • [10]

    P. Russbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann and R. Poprawe, Opt. Lett. 35, 4169–4171 (2010).CrossrefGoogle Scholar

  • [11]

    J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, et al., Opt. Lett. 38, 5442 (2013).CrossrefGoogle Scholar

  • [12]

    P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, et al., IEEE J. Select. Top. Quant. Electron. 21, 447–463 (2015).CrossrefGoogle Scholar

  • [13]

    J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, et al., Opt. Express 10, 628 (2002).CrossrefGoogle Scholar

  • [14]

    G. Raciukaitis, M. Brikas and M. Gedvilas, in ‘Proceedings of ICALEO 2008’ (2008), p. M403.Google Scholar

  • [15]

    B. Neuenschwander, B. Jaeggi, V. Romano and S. M. Pimenov, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII’ (2012).Google Scholar

  • [16]

    O. Haupt, V. Schütz and U. Stute, in ‘Laser-based Micro- and Nanopackaging and Assembly V’ (2011).Google Scholar

  • [17]

    L. Büsing, S. Eifel and P. Loosen, in ‘SPIE Photonics Europe 2014, Proceedings Volume 9131, Optical Modelling and Design III’, vol. 9131 (Brussels, Belgium, 2014), pp. 91310C-91310C-12.Google Scholar

  • [18]

    J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).CrossrefGoogle Scholar

  • [19]

    Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, et al., Appl. Surf. Sci. 255, 6582–6588 (2009).CrossrefGoogle Scholar

  • [20]

    Z. Kuang, W. Perrie, D. Liu, S. Edwardson, J. Cheng, et al., Appl. Surf. Sci. 255, 9040–9044 (2009).CrossrefGoogle Scholar

  • [21]

    R. De Loor, Phys. Proc. 41, 544–551 (2013).CrossrefGoogle Scholar

  • [22]

    J. Schille, L. Schneider and U. Loeschner, Appl. Phys. A 120, 847–855 (2015).CrossrefGoogle Scholar

  • [23]

    B. Jaeggi, V. Romano and S. M. Pimenov, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX’ (2014).Google Scholar

  • [24]

    U. Loeschner, J. Schille, A. Streek, T. Knebel and L. Hartwig, J. Laser Appl. 27, S29303 (2015).Google Scholar

  • [25]

    G. Hennig, S. Bruening and B. Neuenschwander, in ‘CLEO:2011 – Laser Applications to Photonic Applications’ (2011).Google Scholar

  • [26]

    G. Hennig, K.-H. Selbmann and A. Brockelt, in ‘Workshop on Laser Applications in Europe’ (2005).Google Scholar

  • [27]

    S. Bruening, G. Hennig, S. Eifel and A. Gillner, Phys. Proc. 12, 105–115 (2011).Google Scholar

  • [28]

    R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, et al., Opt. Express 22, 11312 (2014).CrossrefGoogle Scholar

  • [29]

    A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, et al., Opt. Express 16, 8958 (2008).CrossrefGoogle Scholar

  • [30]

    A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, et al., Opt. Lett. 34, 3304 (2009).CrossrefGoogle Scholar

  • [31]

    J. Finger and M. Reininghaus, Opt. Express 22, 18790–18799 (2014).CrossrefGoogle Scholar

  • [32]

    F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, et al., Opt. Express 22, 12200 (2014).CrossrefGoogle Scholar

  • [33]

    H. S. Carslaw and J. C. Jaeger, ‘Conduction of Heat in Solids’ (Clarendon Pr., Oxford, 1959).Google Scholar

  • [34]

    F. Bauer, J. Laser Micro/Nanoeng. 10, 325–328, 2015.CrossrefGoogle Scholar

  • [35]

    A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, et al., Appl. Phys. A 82, 357362 (2005).Google Scholar

  • [36]

    A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 86, 011916 (2005).CrossrefGoogle Scholar

  • [37]

    F. Bauer, A. Michalowski, T. Kiedrowski and S. Nolte, Opt. Express 23, 1035 (2015).CrossrefGoogle Scholar

  • [38]

    J. König, S. Nolte and A. Tünnermann, Opt. Express 13, 10597 (2005).CrossrefGoogle Scholar

  • [39]

    J. Finger, C. Kalupka and M. Reininghaus, J. Mater. Process. Technol. 226, 221227 (2015).Google Scholar

  • [40]

    B. Neuenschwander, Th. Kramer, B. Lauer and B. Jaeggi, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX’ (2015).Google Scholar

  • [41]

    D. Herzog, M. Schmidt-Lehr, M. Canisius, M. Oberlander, J.-P. Tasche, et al., J. Laser Appl. 27, S28001 (2015).CrossrefGoogle Scholar

  • [42]

    T. V. Kononenko, C. Freitag, M. S. Komlenok, V. Onuseit, R. Weber, et al., J. Appl. Phys. 118, 103105 (2015).CrossrefGoogle Scholar

  • [43]

    C. Freitag, M. Wiedenmann, J.-P. Negel, A. Loescher, V. Onuseit, et al., Appl. Phys. A 119, 1237–1243 (2015).CrossrefGoogle Scholar

  • [44]

    R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, et al., Opt. Express 25, 3966–3979 (2017).CrossrefGoogle Scholar

  • [45]

    M. Nießen, L. Bürgermeister and N. Hambach, Laser Technik J. 14, 42–44 (2017).Google Scholar

About the article

Received: 2018-01-25

Accepted: 2018-04-12

Published Online: 2018-05-01

Published in Print: 2018-05-24


Citation Information: Advanced Optical Technologies, Volume 7, Issue 3, Pages 145–155, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2018-0008.

Export Citation

©2018 THOSS Media & De Gruyter, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Giovanni Piredda, Sandra Stroj, Dorian Ziss, Julian Stangl, Rinaldo Trotta, Javier Martín-Sánchez, and Armando Rastelli
Applied Physics A, 2019, Volume 125, Number 3

Comments (0)

Please log in or register to comment.
Log in