Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael


CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.499
Source Normalized Impact per Paper (SNIP) 2018: 1.346

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 8, Issue 3-4

Issues

Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range

Benedikt Stender / Fabian Hilbert / Yannick Dupuis / Alexander Krupp / Willi Mantei / Ruth Houbertz
Published Online: 2019-05-30 | DOI: https://doi.org/10.1515/aot-2019-0022

Abstract

Industrial high-precision 3D Printing (HP3DP) via two-photon absorption (TPA) provides freedom in design for the fabrication of novel products that are not feasible with conventional techniques. Up to now, 2PP-fabrication has only been used for structures on the micrometer scale due to limited traveling ranges of the translation stages and the field-of-view (FoV) of microscope objectives (diameters below 0.5 mm). For industrial applications, not only high throughput but also scalability in size is essential. For this purpose, this contribution gives insights into different manufacturing strategies composed of varying exposure modes, fabrication modes, and structuring modes, which enable the generation of large-scale optical elements without relying on stitching. With strategies like stage-only mode or synchronized movement of galvoscanners and translation stages, optical elements with several millimeters in diameter and freeform shape can be fabricated with optical surface quality.

Keywords: freeform; high-precision 3D printing; manufacturing strategy; scalable lenses

References

  • [1]

    S. Maruo, O. Nakamura and S. Kawata, Opt. Lett. 22, 132 (1997).CrossrefGoogle Scholar

  • [2]

    J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, et al. Opt. Lett. 28, 301 (2003).CrossrefGoogle Scholar

  • [3]

    R. Houbertz, H. Wolter, V. Schmidt, L. Kuna, V. Satzinger, et al. MRS Proc. 1054, 1054-FF01-04 (2007).Google Scholar

  • [4]

    J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science 325, 1513–1515 (2009).CrossrefGoogle Scholar

  • [5]

    A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, et al. Sci. Rep. 6, 1–8 (2016).CrossrefGoogle Scholar

  • [6]

    T. Gissibl, S. Thiele, A. Herkommer and H. Giessen, Nat. Photonics 10, 554–560 (2016).CrossrefGoogle Scholar

  • [7]

    S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, et al. J. Biophotonics 5, 687–702 (2012).CrossrefGoogle Scholar

  • [8]

    T. Stichel, B. Hecht, R. Houbertz and G. Sextl, J. Laser Micro Nanoeng. 5, 209–212 (2010).CrossrefGoogle Scholar

  • [9]

    F. Böhrnsen, M. Krier, S. Grohmann, N. Hauptmann, M. Frant, et al. Biomed. Mater. 14, 035001 (2019).CrossrefGoogle Scholar

  • [10]

    M. Farsari, M. Vamvakaki and B. N. Chichkov, J. Opt. 12, 124001 (2010).CrossrefGoogle Scholar

  • [11]

    D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, et al. Laser Photonics Rev. 8, 458–467 (2014).CrossrefGoogle Scholar

  • [12]

    L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, et al. Opt. Eng. 56, 1 (2017).Google Scholar

  • [13]

    S. Dehaeck, B. Scheid and P. Lambert, Addit. Manuf. 21, 589–597 (2018).CrossrefGoogle Scholar

  • [14]

    J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, et al. Sci. Rep. 8, 1–9 (2018).CrossrefGoogle Scholar

  • [15]

    N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, et al. Adv. Mater. Technol. 2, 1700018 (2017).CrossrefGoogle Scholar

  • [16]

    P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, et al. Nat. Photonics 12, 241–247 (2018).CrossrefGoogle Scholar

  • [17]

    R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, et al. Thin Solid Films 442, 194–200 (2003).CrossrefGoogle Scholar

  • [18]

    J. Serbin, R. Houbertz, C. Fallnich and B. N. Chichkov, Laser Micromach. Optoelectron. Device Fabr. 4941, 73 (2003).CrossrefGoogle Scholar

  • [19]

    T. Stichel, R. Houbertz and B. Hecht, in: ‘11th International Symposium on Laser Precision Microfabrication’, 2010.Google Scholar

  • [20]

    T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, et al. Adv. Mater. 24, 2710–2714 (2012).CrossrefGoogle Scholar

  • [21]

    T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, Opt. Lett. 41, 4269 (2016).CrossrefGoogle Scholar

  • [22]

    T. Stichel, Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation (University Library Würzburg, Würzburg, 2014). http://publica.fraunhofer.de/dokumente/N-426462.html.

  • [23]

    X. Zhou, Y. Hou and J. Lin, AIP Adv. 5, 030701 (2015).CrossrefGoogle Scholar

  • [24]

    K. S. Lee, R. H. Kim, D. Y. Yang and S. H. Park, Prog. Polym. Sci. 33, 631–681 (2008).CrossrefGoogle Scholar

  • [25]

    H. Sun and S. Kawata, J. Light. Technol. 21, 624–633 (2003).CrossrefGoogle Scholar

  • [26]

    M. Malinauskas, H. Gilbergs, A. Ukauskas, V. Purlys, D. Paipulas, et al. J. Opt. 12, 035204 (2010).CrossrefGoogle Scholar

  • [27]

    L. Jonušauskas, D. Gailevičius, L. Mikoliunaite, D. Sakalauskas, S. Šakirzanovas, et al. Materials (Basel) 10, 1–18 (2017).Google Scholar

  • [28]

    B. Stender, W. Mantei, R. Houbertz and B. Hall, Laser Tech. J. 14, 20–23 (2017).Google Scholar

  • [29]

    S. Steenhusen, Untersuchungen zur sub-100 nm Strukturierung von Hybridpolymeren mittels Zwei-Photonen Absorption und Anwendungen (Friedrich-Schiller-Universität Jena, Jena, Germany, 2018). http://publica.fraunhofer.de/documents/N-519861.html.

  • [30]

    M. Born and E. Wolf, ‘Principles of Optics’, 6th edition (Pergamon Press, Oxford, 1980).Google Scholar

  • [31]

    S. Sinzinger and J. Jahns, ‘Microoptics’, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).Google Scholar

About the article

Received: 2019-02-15

Accepted: 2019-04-23

Published Online: 2019-05-30

Published in Print: 2019-06-26


Funding Source: Bundesministerium für Wirtschaft und Energie

Award identifier / Grant number: TOU-1512-004

Part of the work was funded by Bundesministerium für Wirtschaft und Energie, Funder Id: http://dx.doi.org/10.13039/501100006360, Grant Number: TOU-1512-004.


Citation Information: Advanced Optical Technologies, Volume 8, Issue 3-4, Pages 225–231, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2019-0022.

Export Citation

©2019 THOSS Media & De Gruyter, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in