Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advanced Optical Technologies

Editor-in-Chief: Pfeffer, Michael

6 Issues per year


CiteScore 2016: 0.99
CiteScoreTracker 2017: 1.30

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 1.109

In co-publication with THOSS Media GmbH

Online
ISSN
2192-8584
See all formats and pricing
More options …
Volume 7, Issue 1-2

Issues

Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

Marco A.G. Porcel / Iñigo Artundo / J. David Domenech / Douwe Geuzebroek / Rino Sunarto / Romano Hoofman
Published Online: 2018-03-24 | DOI: https://doi.org/10.1515/aot-2017-0065

Abstract

This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

Keywords: biophotonics; integration; life science; photonics; sensors; silicon nitride; visible

References

  • [1]

    K. Yamada, J. Liu, T. Baba, L. Vivien, D.-X. Xu, et al., Photonic Integration and Photonics-Electronics Convergence on Silicon Platform (Frontiers Media SA, Lausanne, Switzerland, 2015).Google Scholar

  • [2]

    R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).CrossrefGoogle Scholar

  • [3]

    A. E.-J. Lim, J. Song, F. Qing, C. Li, X. Tu, et al., IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).CrossrefGoogle Scholar

  • [4]

    P. Muñoz, G. Mico, L. A. Bru, D. Pastor, D. Pérez, et al., Sensors 17, 2088 (2017).CrossrefGoogle Scholar

  • [5]

    R. G. Heideman, R. P. H. Kooyman, and J. Greve, Sens. Actuat. B: Chem. 10, 209–217 (1993).CrossrefGoogle Scholar

  • [6]

    E. F. Schipper, A. M. Brugman, L. M. Lechuga, L. M. Lechuga, R. P. H. Kooyman, et al., Sens. Actuat. B: Chem. 40, 147–153 (1997).CrossrefGoogle Scholar

  • [7]

    A. Fernández Gavela, D. Grajales Garca, J. C. Ramirez, and L. M. Lechuga, Sensors 16, 285 (2016).CrossrefGoogle Scholar

  • [8]

    W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, et al., J. Lightwave Technol. 23, 401–412 (2005).CrossrefGoogle Scholar

  • [9]

    R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. H. Geuzebroek, et al., Proc. SPIE 7221, 7221-7221-15 (2009). doi: 10.1117/12.808409.Google Scholar

  • [10]

    C. Monat, P. Domachuk and B. J. Eggleton, Nat. Photonics 1, 106–114 (2007).CrossrefGoogle Scholar

  • [11]

    M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl and C. T. Sullivan, MOEMS 5720 (2005), 109–118.Google Scholar

  • [12]

    A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, et al., IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).CrossrefGoogle Scholar

  • [13]

    A. Schimpf, F. Canto, D. Bucci, A. Magnaldo, L. Couston, et al., In: ‘2011 2nd International Conference on Microfluidics and Integrated Optics Glass Sensor for In-line Microprobing of Nuclear Samples in Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA) (IEEE, 2011), 1–7.Google Scholar

  • [14]

    I. D. Block, L. L. Chan and B. T. Cunningham, Sens. Actuat. B: Chem. 120, 187–193 (2006).CrossrefGoogle Scholar

  • [15]

    A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar and A. Adibi, Opt. Express 23, 30297 (2015).CrossrefGoogle Scholar

  • [16]

    G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, et al. Biosens. Bioelectron. 7, 1–11 (2016).Google Scholar

  • [17]

    D. McCloskey and J. F. Donegan, Silicon nitride microdisks in the visible range in Transparent Optical Networks (ICTON), 2011 13th International Conference on (IEEE, 2011), 1–4.Google Scholar

  • [18]

    D. N. Urrios, F. F. Lupi, J. Montserrat, C. Domínguez, P. Pellegrino, et al., Optical characterisation of high Q silicon rich silicon nitride u-disks in the visible range in CLEO/Europe and EQEC 2011 Conference Digest (2011), paper CK2_4 The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), CK2_4.Google Scholar

  • [19]

    S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein and J. Witzens, Opt. Lett. 38, 2521–2523 (2013).CrossrefGoogle Scholar

  • [20]

    S. Romero-Garcia, T. Klos, E. Klein, J. Leuermann, D. Geuzebroek, et al., Proc. SPIE, 101080 (2017).Google Scholar

  • [21]

    D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, et al., IEEE Photon. Technol. Lett. 27, 137–140 (2015).CrossrefGoogle Scholar

  • [22]

    D. Geuzebroek, A. van Rees, E. Klein and K. Lawniczuk, Visible arrayed waveguide grating (400 nm–700 nm) for ultra-wide band (400–1700 nm) integrated spectrometer for spectral tissue sensing. in CLEO/Europe and EQEC 2017 Conference Digest (2017).Google Scholar

  • [23]

    G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, et al., Light Sci. Appl. 3, e203 (2014).CrossrefGoogle Scholar

  • [24]

    X. Nie, E. Ryckeboer, G. Roelkens and R. Baets, Opt. Express 25, A409 (2017).CrossrefGoogle Scholar

  • [25]

    C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky and L. E. Katz LE, Appl. Opt. 26, 2621 (1987).CrossrefGoogle Scholar

  • [26]

    J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, et al., Opt. Express 19, 3163–3174 (2011).CrossrefGoogle Scholar

  • [27]

    A. Leinse, R. G. Heideman, E. J. Klein, R. Dekker, C. G. H. Roeloffzen, et al., TriPleX™ platform technology for photonic integration: applications from UV through NIR to IR in Information Photonics (IP), 2011 ICO International Conference on (IEEE, 2011), 1–2.Google Scholar

  • [28]

    S. Romero-García, F. Merget, F. Zhong, H. Finkelstein and J. Witzens, Opt. Express 21, 14036 (2013).CrossrefGoogle Scholar

  • [29]

    A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, et al., IEEE Photon. J. 5, 2202809 (2013).CrossrefGoogle Scholar

  • [30]

    K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, et al., Opt. Express 22, 8856 (2014).CrossrefGoogle Scholar

  • [31]

    D. Duval, J. Osmond, S. Dante, C. Domínguez and L. M. Lechuga, IEEE Photon. J. 5, 3700108–3700108 (2013).CrossrefGoogle Scholar

  • [32]

    F. Ghasemi, A. A. Eftekhar, D. S. Gottfried, X. Song, R. D. Cummings, et al., Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength in (2013), 85940A.Google Scholar

  • [33]

    C. A. Barrios, Anal. Bioanal. Chem. 403, 1467–1475 (2012).CrossrefGoogle Scholar

  • [34]

    L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, et al., Silicon nitride photonic crystal nanocavities for biochip applications in Transparent Optical Networks (ICTON), 2011 13th International Conference on (IEEE, 2011), 1–4.Google Scholar

  • [35]

    P. V. Lambeck, Integrated optical sensors for the chemical domain. Meas. Sci. Technol. 17, R93–R116 (2006).Google Scholar

  • [36]

    F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, et al., Nanotechnology 14, 907–912 (2003).CrossrefGoogle Scholar

  • [37]

    F. Ghasemi, A. A. Eftekhar, H. S. Mousavi, R. Abbaspour, H. Moradinejad, et al., Lab-on-chip Silicon Nitride Microring Sensor at Visible Wavelength Using Glycoprotein Receptors in CLEO: Applications and Technology (Optical Society of America, 2014), AW1L–3.

  • [38]

    J. Maldonado, A. B. González-Guerrero, C. Domínguez and L. M. Lechuga, Biosens. Bioelectron. 85, 310–316 (2016).CrossrefGoogle Scholar

  • [39]

    M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, et al., Sci. Rep. 6, 1–10 (2016).CrossrefGoogle Scholar

  • [40]

    J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, et al., Opt. Express 23, 19596–19604 (2015).CrossrefGoogle Scholar

  • [41]

    M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig and M. Hoekman, et al., Opt. Express 25, 1542 (2017).CrossrefGoogle Scholar

  • [42]

    D. J. Moss, R. Morandotti, A. L. Gaeta and M. Lipson, Nat. Photonics 7, 597–607 (2013).CrossrefGoogle Scholar

  • [43]

    S. Sabouri, M. Namdari, S. Hosseini and K. Jamshidi, 1-D array of silicon nitride grating couplers for visible light communications in Wireless for Space and Extreme Environments (WiSEE), 2016 IEEE International Conference on (IEEE, 2016), 73–76.Google Scholar

  • [44]

    M. Raval, A. Yaacobi, D. Coleman, N. M. Fahrenkopf, C. Baiocco, et al., Nanophotonic phased array for visible light image projection in Photonics Conference (IPC) (IEEE, 2016), 206–207.Google Scholar

  • [45]

    M. J. Heck, Nanophotonics 6, 93–107 (2016).Google Scholar

  • [46]

    P. Muellner, E. Melnika, G. Koppitsch, J. Kraft, F. Schrank, et al., Procedia Eng. 120, 578–581 (2015).CrossrefGoogle Scholar

  • [47]

    E. Ryckeboer, J. Vierendeels, A. Lee, S. Werquin, P. Bienstman, et al., Lab Chip 13, 4392 (2013).CrossrefGoogle Scholar

  • [48]

    D. Bischof, F. Kehl and M. Michler, Opt. Commun. 380, 273–279 (2016).CrossrefGoogle Scholar

  • [49]

    X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-P. Huang, et al., Thin Solid Films 460, 72–77 (2004).CrossrefGoogle Scholar

  • [50]

    R. G. Heideman, A. Melloni, M. Hoekman, A. Borreman, A. Leinse, et al., Proc. IEEE Benelux, 71–74 (2005).Google Scholar

  • [51]

    A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, et al., Photon. Res. 3, 47–59 (2015).Google Scholar

  • [52]

    T. Chalyan, L. Pasquardini, F. Falke, M. Zanetti, R. Guider, et al., Proc. SPIE 9899, 1–9 (2016).Google Scholar

  • [53]

    B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, et al., J. Opt. A Pure Appl. Opt. 8, S561–S566 (2006).Google Scholar

  • [54]

    T. Claes, W. Bogaerts and P. Bienstman, Opt. Lett. 36, 3320 (2011).CrossrefGoogle Scholar

  • [55]

    D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, et al., Opt. Express 19, 14130–14136 (2011).CrossrefGoogle Scholar

  • [56]

    K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, et al., Adv. Opt. Technol. 2008, 1–6 (2008).Google Scholar

  • [57]

    F. Ghasemi, M. Chamanzar, E. S. Hosseini, A. A. Eftekhar, Q. Li, et al., Compact fluorescence sensor using on-chip silicon nitride microdisk in Photonics Conference (PHO) (IEEE, 2011), 151–152.Google Scholar

  • [58]

    M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, P. V. Dorpe, et al., ACS Photonics 4, 495–500 (2017).CrossrefGoogle Scholar

  • [59]

    T. Korthorst, R. Stoffer and A. Bakker, Adv. Opt. Technol. 4, 147–155 (2015).Google Scholar

  • [60]

    Luceda. http://www.lucedaphotonics.com/.

  • [61]

    PhoeniX Software – Solutions for micro and nano technologies. http://www.phoenixbv.com/.

  • [62]

    Photon Design. https://www.photond.com/.

  • [63]

    RSoft Products. https://www.synopsys.com/optical-solutions/rsoft.html.

  • [64]

    Optiwave. https://optiwave.com/.

  • [65]

    Lumerical Inc. / Innovative Photonic Design ToolsGoogle Scholar

  • [66]

    COMSOL Wave Optics Simulation Software. https://www.comsol.com/wave-optics-module.

  • [67]

    L. Bolla, ElectroMagnetic-Python version 0.1.2.Google Scholar

  • [68]

    Prototyping multi project wafer runs. www.europracticeic.com.

  • [69]

    PIX4life. http://www.pix4life.eu/.

  • [70]

    PIXAPP. http://www.pixapp.eu/.

  • [71]

    T. Claes, W. Bogaerts and P. Bienstman, Opt. Express 18, 22747 (2010).CrossrefGoogle Scholar

  • [72]

    R. Dekker, E. Klein and D. Geuzebroek, Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications in (IEEE, 2012), 286–287.Google Scholar

  • [73]

    L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, et al., Opt. Lett. 42, 803–806 (2017).CrossrefGoogle Scholar

  • [74]

    M. J. R. Heck, J. F. Bauters, M. L. Davenport, K. K. Doylend, S. Jain, et al., IEEE J. Sel. Top. Quantum Electron. 19, 6100117–6100117 (2013).CrossrefGoogle Scholar

  • [75]

    E. P. Haglund, S. Kumari, E. Haglund, J. Gustavsson, R. G. Baets, et al., IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).Google Scholar

  • [76]

    D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, USA, 1998).Google Scholar

  • [77]

    S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, et al., Design of an intra-cavity SiN grating for integrated 850nm VCSELs in Proceedings Symposium IEEE Photonics Society Benelux (2016), 263–266.Google Scholar

  • [78]

    LioniX International. http://www.lionix-international.com/.

  • [79]

    Imec R&D, nano electronics and digital technologies. https://www.imec-int.com/.

About the article

Marco A.G. Porcel

Marco A.G. Porcel obtained his MSc in Telecom Engineering at the Polytechnic University of Valencia (UPV, Spain) in 2011. He continued with his PhD degree (defended on December 2017) on nonlinear control of light in integrated waveguides at the Laser Physics and Nonlinear Optics group (LPNO) part of the MESA+ Institute for Nanotechnology at the University of Twente (The Netherlands). In 2017, he joined VLC Photonics as the R&D Manager, working on the field of photonic integrated circuits.

Iñigo Artundo

Iñigo Artundo obtained his MSc in Telecom Engineering at the Universidad Publica de Navarra (Pamplona, Spain) in 2005 and received his PhD in Applied Physics and Photonics at the Vrije Universiteit Brussel (Brussels, Belgium) in 2009. He has been involved in several national and European research projects and networks of excellence focused on optical telecom and interconnects, micro-optics, and photonic integration. He has worked as a reviewer for several scientific journals, national and international funding agencies. He holds specializations in Business Financing, Commercial Management and Research, and Strategic Marketing. He is a member of IEEE, SPIE, and COIT. He currently is the CEO of VLC Photonics, working in the field of photonic integrated circuits.

J. David Domenech

J. David Domenech received his BSc degree in Telecommunications and his MSc degree in Technologies, Systems and Networks of Communication from the Universidad Politecnica de Valencia (UPV) in 2006 and 2008, respectively. He obtained his PhD degree in Optics at the Telecommunications and Multimedia Applications Institute (iTEAM) from UPV, inside the Optical and Quantum Communications Group, focusing his research in the use of integrated ring resonators for microwave photonics applications. Since 2006, he has been working on the design of integrated optic circuits in indium phosphide/silicon nitride/SOI technologies within several European and national research projects. In 2012, he was awarded with the Intel PhD Honor Programme award. He is currently the CTO of VLC Photonics, working in the field of photonic integrated circuits.

Douwe Geuzebroek

Douwe Geuzebroek is the VP of sales and marketing at LioniX International. He holds a masters degree in Electrical Engineering of the University of Twente and did a PhD research at the Integrated Optical MicroSystems group on the topic of ‘Flexible Optical Network Components Based on Densely Integrated Micro-ring Resonators’. Besides this, he finished an introduction program at the TSM Business School. In 2005, he joined LioniX b.v. as a design engineer and project leader focusing on micro-ring resonators and other integrated optical telecommunication devices and was actively involved in the start-up of XiO Photonics in 2009.

Rino Sunarto

Rino Sunarto studied at the Saint Joseph College Malang and obtained his BEng on Electrical and Electronic Engineering in 2008 at the Saxion University of Applied Sciences. He was an ASIC design engineer at Bruco B. V. from 2008 to 2009, a junior design engineer at XiO Photonics from 2009 to 2011, and now works as a software engineer at PhoeniX Software.

Romano Hoofman

Romano Hoofman received his MSc degree in Molecular Sciences from Wageningen University in the Netherlands in 1995 and his PhD degree in Radiation Chemistry from the Technological University of Delft, The Netherlands, in 2000. He started his career in the industry where he worked as a principal scientist at Philips Research and later on at NXP Semiconductors. He covered many different R&D topics, ranging from CMOS integration, photovoltaic technology, thin-film batteries, and sensors (which form together the building blocks for IoT sensor nodes). Currently, he is a program director at IMEC, where he is responsible for the project management of Europractice and related services.


Received: 2017-10-05

Accepted: 2017-12-04

Published Online: 2018-03-24

Published in Print: 2018-04-25


Citation Information: Advanced Optical Technologies, Volume 7, Issue 1-2, Pages 57–65, ISSN (Online) 2192-8584, ISSN (Print) 2192-8576, DOI: https://doi.org/10.1515/aot-2017-0065.

Export Citation

©2018 THOSS Media & De Gruyter, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in