Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Open Access
Online
ISSN
2083-6023
See all formats and pricing
More options …
Volume 33, Issue 3

Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

Dawid Taler
  • Corresponding author
  • Institute of Heat Transfer Engineering and Air Protection, Faculty of Environmental Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-22 | DOI: https://doi.org/10.2478/v10173-012-0014-z

Abstract

This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.

Keywords: Heat transfer correlations; Tube and plate fin heat exchangers; Mathematical model

  • [1] Welty J.R., Wicks Ch.E., Wilson R.E., Rorrer G.L.: Fundamentals of Momentum,Heat, and Mass Transfer, 5th edn. John Wiley & Sons, New York 2007.Google Scholar

  • [2] McAdams W.H.: Heat Transmissions, 3rd edn. McGraw-Hill, New York 1954.Google Scholar

  • [3] Shah R. K., Sekulić D.P.: Fundamentals of Heat Exchanger Design.Wiley, Hoboken 2003.Google Scholar

  • [4] Dittus F.W., Boelter L.M.K.: Heat transfer in automobile radiators of thetubular type. University of California Publ. on Eng. 2(1930), 443-461, reprinted in: Int. Commun. Heat Mass Transfer 12(1985), 3-22.Google Scholar

  • [5] Prandtl L.: Eine Beziehung zwischen Wärmeaustausch und Strömungswiderstandder Flüssigkeit. Z. Physik, 11(1910), 1072-1078.Google Scholar

  • [6] Petukhov B.S., Genin A.G., Kovalev S.A.: Heat Transfer in Nuclear PowerPlants. Atomizdat, Moscow 1974 (in Russian).Google Scholar

  • [7] Prandtl L.: Führer durch die Strömungslehre. Vieweg und Sohn, Braunschweig 1944.Google Scholar

  • [8] Lyon R.N.: Liquid metal heat transfer coefficients. Chem. Engr. Progr. 47(1951), 2, 75-79.Google Scholar

  • [9] Kutateladze S.S.: Fundamentals of Heat Transfer. Edward Arnold, London 1963.Google Scholar

  • [10] Reichhardt H.: Vollständige Darstellung der turbulenten Geschwindigkeitsverteilungin glatten Leitungen. Angew. Math. Mech. 30(1951), 7, 208-219.CrossrefGoogle Scholar

  • [11] Gnielinski V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulentdurchströmten Rohren und Kanälen. Forschung im Ingenieurwesen 41(1975), 1, 8-16.Google Scholar

  • [12] Gnielinski V.: New equations for heat and mass transfer in turbulent pipe andchannel flow. Int. Chem. Engng. 16(1976), 359-368.Google Scholar

  • [13] Wilson E.E.: A basis for rational design of heat transfer apparatus. Trans. ASME 37(1915), 47-70.Google Scholar

  • [14] Webb R.L., Narayanamurthy R., Thors P.: Heat transfer and friction characteristicsof internal helical-rib roughness. Trans. ASME, J. Heat Transfer 122(2000), 134-142.Google Scholar

  • [15] Kays W.M., London A.L.: Compact Heat Exchangers. McGraw-Hill, 3rd edn. New York 1984.Google Scholar

  • [16] Taler D.: Dynamics of Tube Heat Exchangers. AGH University of Science and Technology Press, Cracow 2009 (in Polish).Google Scholar

  • [17] Taler D.: Methods for obtaining heat transfer correlations for plate finned heatexchangers using experimental and CFD simulated data. Arch. Thermodynamics 25(2004), 4, 31-54.Google Scholar

  • [18] Taler D.: Experimental and numerical predictions of the heat transfer correlationsin the cross-flow plate fin and tube heat exchangers. Arch. Thermodynamics 28(2007), 2, 3-18.Google Scholar

  • [19] Seber G.A.F., Wild C.J.: Nonlinear Regression. Wiley, New York 1989.Google Scholar

  • [20] Taler D.: Theoretical and experimental analysis of heat exchangers with extendedsurfaces. Cracow Branch of Polish Academy of Sciences, Automotive Committee, Cracow, Poland 2002, Vol. 25, Monograph 3.Google Scholar

  • [21] Bevington P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York 1969.Google Scholar

  • [22] Taler D., Trojan M., Taler J.: Numerical modeling of cross-flow tube heatexchangers with complex flow arrangements. In: Evaporation, Condensation and Heat Transfer, Amimul Ahsan Ed., Chap. 13, 261-278. InTech, Rijeka-Shanghai 2011.Google Scholar

About the article

Published Online: 2012-11-22

Published in Print: 2012-09-01


Citation Information: Archives of Thermodynamics, Volume 33, Issue 3, Pages 1–24, ISSN (Online) 2083-6023, ISSN (Print) 1231-0956, DOI: https://doi.org/10.2478/v10173-012-0014-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in