Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Open Access
Online
ISSN
2083-6023
See all formats and pricing
More options …

Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2

Paweł Ziółkowski
  • Corresponding author
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Witold Zakrzewski
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oktawia Kaczmarczyk
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Badur
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-05 | DOI: https://doi.org/10.2478/aoter-2013-0008

Abstract

In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.

Keywords : Inverse Brayton cycle; Brayton cycle; gas-steam unit; oxy combustion; CCS; thermodynamic analysis; numerical analysis; CFM

  • [1] Anderson R., MacAdam S., Viteri F., Davies D., Downs J., Paliszewski A.: Adapting gas turbines to zero emission oxy-fuel power plants. ASME Paper GT2008-51377 (2008) 1-11.Google Scholar

  • [2] Badur J.: Development of Energy Concept. Wyd. IMP PAN, Gdańsk 2009 (in Polish).Google Scholar

  • [3] Badur J.: Five lecture of contemporary fluid termomechanics. Gdańsk 2005 (in Polish). www.imp.gda.pl/fileadmin/doc/o2/z3/.../2005piecwykladow.pdf.Google Scholar

  • [4] Badur J.: Numerical modeling of sustanable combustion at gas turbine. Wyd. IMP PAN Gdańsk 2003 (in Polish).Google Scholar

  • [5] Badur J., Lemański M.: Inverse Brayton cycle - high performance maner heatrecovery from gas turbine. Energetyka Cieplna i Zawodowa 221(2003), 46-48 (in Polish).Google Scholar

  • [6] Bolland O, Kvamsdal H.M., Boden J.C.: A thermodynamic comparison ofoxy-fuel power cycles water-cycle, Graz-cycle, and Matiant-cycle. Proc. of the Int. Conf. on Power Generation and Sustainable Development. Liege, Belgium, 2001.Google Scholar

  • [7] Carapellucci R., Milazzo A.: Repowering combined cycle power plants by amodified STIG configuration. Energ Convers. Manage. 48(2007), 1590-1600.Google Scholar

  • [8] Chodkiewicz R., Porochnicki J., Kaczan B.: Steam - gas condensing turbinesystem for power and heat generation. ASME Paper 2001-GT-0097 (2001) 1-8.Google Scholar

  • [9] Chorowski M.: Cryogenics. Basics and applications. IPPU, Masta 2007.Google Scholar

  • [10] Directive 2010/75/Eu of the European Parliament and of the Council of 24 November2010 on industrial emissions (integrated pollution prevention and control).Google Scholar

  • [11] Gou1 C., Cai R., Hong H.: An advanced oxy-fuel power cycle with high efficiency. Proc. IMechE Part A: J. Power Energ. 220(2006) 315-324.Google Scholar

  • [12] Hollis R., Skutley P., Ortiz C., Varkey V., LePage D., Brown B., Davies D., Harris M.: Oxy-fuel turbomachinery development for energy intensive industrialapplications. Proc. of ASME Turbo Expo 2012, GT2012-69988 (2012), 1-9.Google Scholar

  • [13] Hong J., Chaudhry G., Brisson J.G., Field R., Gazzino M., Ghoniem A.: Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. web.mit.edu/mitei/docs/reports/hong-analysis.pdf.Google Scholar

  • [14] Jericha H., Sanz W., Woisetschläger J, Fesharaki M.: CO2 - RetentionCapability of CH4/O2 - Fired Graz Cycle. CIMAC Conf. Paper, Interlaken, Switzerland 1995.Google Scholar

  • [15] Jesionek K., Chrzczonowski A., Ziółkowski P., Badur J.: Power enhancementof the Brayton cycle by steam utilization. Arch. Thermodyn. 33(2012), 3, 39-50.Google Scholar

  • [16] Kaproń H., Wasilewski A.: Natural gas fuel XXI century. Wyd. KAPRINT, Lublin 2012 (in Polish).Google Scholar

  • [17] Kolev N., Schaber K., Kolev D.: A new type of a gas - steam turbine cyclewith increased efficiency. Appl. Therm. Eng. 21(2001), 391-405.Google Scholar

  • [18] Kvamsdal H.M., Jordal K, Bolland O.: A quantitative comparison of gasturbine cycles with CO2 capture. Energy 32(2007), 10-24.Web of ScienceGoogle Scholar

  • [19] Lemański M.: Analyses of thermodynamic cycles with fuel cells and gas-steamturbine. PhD thesis, IF-FM PAS, Gdańsk 2007 (in Polish).Google Scholar

  • [20] Liu C.Y., Chen G., Sipocz N., Assadi M., Bai X.S.: Characteristic of oxy-fuelcombustion in gas turbine. Apl. Energ. 89(2012), 387-394.Google Scholar

  • [21] Mathieu Ph., Nihart R.: Sensitivity analysis of the MATIANT cycle. Energ. Convers. Manage. 40(1999), 15, 1687-1700.Google Scholar

  • [22] Sanz W., Hustad Carl-W., Jericha H.: First generation Graz cycle power plantfor near-term deployment. Proc. of ASME Turbo Expo 2011, GT2011-45135 (2011) 1-11.Google Scholar

  • [23] Staicovici M.: Further research zero CO2 emission power production: the‘COOLENERG’ process. Energy 27(2002), 831-844.Google Scholar

  • [24] Topolski J.: Combustion diagnosis in combined gas-steam cycle. PhD thesis, IFFM PAS, Gdańsk, 2002 (in Polish).Google Scholar

  • [25] Yang H.J., Kang D.W., Ahn J.H., Kim T.S.: Evaluation of design performanceof the semi-closed oxy-fuel combustion combined cycle. Proc. of ASME Turbo Expo 2012, GT2012-69141 (2012) 1-12.Google Scholar

  • [26] Yantovsky E., Górski J., Shokotov M.: Zero Emissions Power Cycles. Taylor & Francis Group, 2009.Google Scholar

  • [27] Yantovsky E., Górski J., Smyth B, Elshof J.: Zero-emission fuel-fired powerplants with ion transport membrane. Energy 29(2004), 2077-2088.CrossrefGoogle Scholar

  • [28] Yantovski E., Zvagolsky K., Gavrilenko V.: The COOPERATE- demo powercycle. Energy Convers. Manage 36(1995), 861-864.CrossrefGoogle Scholar

  • [29] Zaporowski B.: Perspectives of development of gas power sources in Polish electroenergetic. Polityka Energetyczna, 12(2009), Z. 2/2, (in Polish).Google Scholar

  • [30] Zhang N., Lior N.: Two novel oxy-fuel power cycles integrated with natural gasreforming and CO2 capture. Energy 33(2008), 340-351.Web of ScienceGoogle Scholar

  • [31] Ziółkowski P., Lemański M., Badur J., Nastałek L.: Power augmentation ofPGE Gorzow’s gas turbine by steam injection - thermodynamic overview. Rynek Energii 98(2012), 161-167. Google Scholar

  • [32] Ziółkowski P., Lemański M., Badur J., Zakrzewski W.: Increase efficiencygas turbine by use the Szewalski idea. Rynek Energii, 100(2012), 63-70 (in Polish).Google Scholar

  • [33] Ziółkowski P., Zakrzewski W., Sławiński D., Badur J.: Clean gas technology- opportunity for Pomerania. Rynek Energii 104(2013), 79-85 (in Polish).Google Scholar

About the article

Published Online: 2013-07-05

Published in Print: 2013-06-01


Citation Information: Archives of Thermodynamics, ISSN (Online) 2083-6023, ISSN (Print) 1231-0956, DOI: https://doi.org/10.2478/aoter-2013-0008.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in