Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

4 Issues per year

CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Open Access
See all formats and pricing
More options …
Volume 35, Issue 1

Recent key technical barriers in solid oxide fuel cell technology

Jarosław Milewski
  • Corresponding author
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Budzianowski
  • Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Street, 50-370 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/aoter-2014-0002


High-temperature solid oxide fuel cells (SOFCs) are considered as suitable components of future large-scale clean and efficient power generation systems. However, at its current stage of development some technical barriers exists which limit SOFC’s potential for rapid large-scale deployment. The present article aims at providing solutions to key technical barriers in SOFC technology. The focus is on the solutions addressing thermal resistance, fuel reforming, energy conversion efficiency, materials, design, and fuel utilisation issues.

Keywords: SOFC; Power plant; Deployment; Technical barrier


  • [1] Budzianowski W.: Negative net CO2 emissions from oxydecarbonization of biogas to H2. Int. J. Chem. React. Eng. 8(2010), A156.Google Scholar

  • [2] Muradov N., Veziroglu T.: ‘Green’ path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrogen Energ. 33(2008), 6804-6839.CrossrefGoogle Scholar

  • [3] Panayiotou G., Kalogirou S., Tassou S.: Solar hydrogen production and storage techniques. Recent Pat. Mech. Eng. 3(2010), 154-159.Google Scholar

  • [4] Yilanci A.,Dincer I., Ozturk H.: A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energ. Combust. 35(2009), 231-244.Web of ScienceCrossrefGoogle Scholar

  • [5] Kee R., Zhu H., Sukeshini A., Jackson G.: Solid oxide fuel cells: operating principles, current challanges, and the role of syngas. Combust. Sci. Technol. 180(2008), 1207-1244.Web of ScienceCrossrefGoogle Scholar

  • [6] Milewski J.,Lewandowski J.: Solid oxide fuel cell fuelled by biogases. Arch. Thermodyn. 30(2009), 4, 3-12.Google Scholar

  • [7] Budzianowski W.: An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane. Int. J. Hydrogen Energ. 35(2010), 7754-7769.Web of ScienceGoogle Scholar

  • [8] Milewski J., Miller A., Sałacinski J.: Off-design analysis of sofc hybrid system. Int. J. Hydrogen Energ. 32(2007), 6, 687-698.CrossrefGoogle Scholar

  • [9] Zhang H., Lin G., Chen J.: Performance analysis and multiobjective optimization of a new molten carbonate fuel cell system. Int. J. Hydrogen Energ. 36(2011), 6, 4015-4021.Web of ScienceCrossrefGoogle Scholar

  • [10] Badyda K.: Characteristics of advanced gas turbine cycles. Rynek Energii 88(2010), 3, 80-86 (in Polish).Google Scholar

  • [11] Mueller F., Gaynor R., Auld A., Brouwer J., Jabbari F., Samuelsen G.G.S.: Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability. J. Power Sources 176(2008), 1, 229-239.Web of ScienceGoogle Scholar

  • [12] Tarroja B., Mueller F., Maclay J., Brouwer J.: Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space. In: Proc. ASME Turbo Expo 2(2008), 829-841.Google Scholar

  • [13] Tarroja B., Mueller F., Maclay J., Brouwer J.: Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space. J. Eng. Gas Turb. Power 132(2010), 7, 072301.Web of ScienceGoogle Scholar

  • [14] Wu W., Luo J.-J.: Nonlinear feedback control of a preheaterintegrated molten carbonate fuel cell system. J. Process Contr. 20(2010), 7, 860-868.Web of ScienceCrossrefGoogle Scholar

  • [15] Al-Sulaiman F., Dincer I., Hamdullahpur F.: Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. Int. J. Hydrogen Energ. 35(2010), 10, 5104-5113.Web of ScienceGoogle Scholar

  • [16] Budzianowski W.: Thermal and bifurcation characteristics of heat recirculating conversion of gaseous fuels. Arch. Thermodyn. 31(2010), 2, 63-75.Google Scholar

  • [17] Lanzini A., Santarelli M., Orsello G.: Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment. Fuel Cells 10(2010), 4, 654-675. Web of ScienceCrossrefGoogle Scholar

  • [18] Sciacovelli A., Verda V.: Entropy generation minimization in a tubular solid oxide fuel cell. J. Energ. Resour. 132(2010), 012601.Google Scholar

  • [19] Kjelstrup S., Coppens M., Pharoah J., Pfeifer P.: Nature-inspired energyand material-efficient design of a polymer electrolyte membrane fuel cell. Energy Fuel 24(2010), 5097-5108.CrossrefWeb of ScienceGoogle Scholar

  • [20] Sciacovelli A., Verda V.: Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC). Energ. 34(2009), 850-865.CrossrefGoogle Scholar

  • [21] Milewski J., Badyda K., Misztal Z., Wołowicz M.: Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application. Rynek Energii 90(2010), 118-123.Google Scholar

  • [22] Colombo K., Kharton V., Bolland O.: Simulation of an oxygen membranebased gas turbine power plant: Dynamic regimes with operational and material constraints. Energ. Fuel. 24(2010), 1, 590-608.Web of ScienceCrossrefGoogle Scholar

  • [23] Christman K., Jensen M.: Solid oxide fuel cell performance with cross-flow roughness. J. Fuel Cell Sci. Techn. 8(2011), 2, 024501.CrossrefGoogle Scholar

  • [24] Cao H., Deng Z., Li X., Yang J., Qin Y.: Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives. Int. J. Hydrogen Energy 35(2010), 4, 1749-1758.Web of ScienceCrossrefGoogle Scholar

  • [25] Cao H., Li X., Deng Z., Jiang J., Yang J., Li J., Qin Y.: Dynamic modeling and experimental validation for the electrical coupling in a 5- cell solid oxide fuel cell stack in the perspective of thermal coupling. Int. J. Hydrogen Energg. 36(2011), 7, 4409-4418.CrossrefGoogle Scholar

  • [26] Hajimolana S., Hussain M., Daud W., Soroush M., Shamiri A.: Mathematical modeling of solid oxide fuel cells: A review. Renew. Sust. Energ. Rev. 15(2011), 4, 1893-1917.CrossrefGoogle Scholar

  • [27] Kishor N., Mohanty S.: Fuzzy modeling of fuel cell based on mutual information between variables. Int. J. Hydrogen Energ. 35(2010), 8, 3620-3631.Web of ScienceCrossrefGoogle Scholar

  • [28] Sisworahardjo N., Yalcinoz T., El-Sharkh M., Alam M.: Neural network model of 100 W portable pem fuel cell and experimental verification. Int. J Hydrogen Energ. 35(2010), 17, 9104-9109.Web of ScienceCrossrefGoogle Scholar

  • [29] Budzianowski W.: Thermal integration of combustion-based energy generators by heat recirculation. Rynek Energii 91(2010), 6, 108-115.Google Scholar

  • [30] Jiang Y., Pollard S., Julien D., Tanner C.: WO Patent 2 007 126 588A2 2007.Google Scholar

  • [31] Budzianowski W.: Non-stationary catalytic combustion over a catalyst with internal temperature gradients. Arch. Combust. 25(2005), 7-15.Google Scholar

  • [32] Budzianowski W., Koziol A.: Determination of parameters of a catalyst particle in non-stationary conditions. Chem. Process Eng. 25(2004),751-756.Google Scholar

  • [33] Chou Y.-S., Stevenson J.: WO Patent 2 009 155 184A1, 2009.Google Scholar

  • [34] Ogiwara T., Matsuzaki Y., Yasuda I., Ito K.: EP Patent 2 244 327A1, 2010.Google Scholar

  • [35] Jacobson C., Dejonghe L., Lu C.: US Patent 7 816 055B2, 2010 Google Scholar

  • [36] Yano M., Tomita A., Sano M., Hibino T.: Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics 177(2007), 3351-3359.Web of ScienceGoogle Scholar

  • [37] Kuhn M., Napporn T.: Single-chamber solid-oxide fuel cell technology - from its origin to todayñs state of the art (review). Energies 3(2010), 57-134.Google Scholar

  • [38] Savoie S., Napporn T., Morel B., Meunier M., Roberge R.: Catalytic activity of ni-ysz anodes in a single chamber solid oxide fuel cell reactor. J. Power Sources 196(2011), 3713-3721.Web of ScienceGoogle Scholar

  • [39] Shao Z., Haile S., Ahn J., Ronney P., Zhan Z., Barnett S.: A thermally selfsustained micro solid-oxide fuel-cell stack with high power density. Nature 435(2005), 795-798.Google Scholar

  • [40] Akhtar N., Decent S., Loghin D., Kendall K.: Mixed-reactant, micro-tubular solid oxide fuel cells: An experimental study. J. Power Sources 193(2009), 39-48.Web of ScienceGoogle Scholar

  • [41] Hao Y., Goodwin D.: Efficiency and fuel utilization of methanepowered singlechamber solid oxide fuel cell. J. Power Sources 183(2008), 157-163.Google Scholar

  • [42] Haile S., Ronney P., Shao Z.: US Patent 20 077 247 402B2, 2007.Google Scholar

  • [43] Du Y., Finnerty C.: WO Patent 2 009 061 294A1, 2009.Google Scholar

  • [44] Lange F., Virkar A.: WO Patent 2 007 005 767A1, 2007.Google Scholar

  • [45] McElroy J.: US Patent 20 090 208 785A1, 2009. Google Scholar

About the article

Received: 2011-05-26

Published Online: 2014-08-15

Published in Print: 2014-03-01

Citation Information: Archives of Thermodynamics, Volume 35, Issue 1, Pages 17–41, ISSN (Online) 2083-6023, DOI: https://doi.org/10.2478/aoter-2014-0002.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in