Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Open Access
Online
ISSN
2083-6023
See all formats and pricing
More options …
Volume 35, Issue 2

Steady-state and transient heat transfer through fins of complex geometry

Dawid Taler
  • Corresponding author
  • Cracow University of Technology, Institute of Thermal Engineering and Air Protection, Warszawska 24, 31-155 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Taler
  • Cracow University of Technology, Department of Thermal Power Engineering, Jana Pawła II 37, 31-864 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-04 | DOI: https://doi.org/10.2478/aoter-2014-0017

Abstract

Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

Keywords: Fin of complex geometry; Fin efficiency; Finite volume method - finite element method

References

  • [1] Kraus A.D., Aziz A., Welty J.: Extended Surface Heat Transfer. John Wiley & Sons, Hoboken, New York 2001.Google Scholar

  • [2] Brandt F.: Warmeubertragung in Dampferzeugern und Warmeaustauschern. FDBR Fachverband Dampfkessel, Behalter- und Rohrleitungsbau E.V., Vulkan Verlag, Essen 1985.Google Scholar

  • [3] Webb R.L.: Principles of Enhanced Heat Transfer, Wiley & Sons, New York 1994.Google Scholar

  • [4] McQuiston F.C., Parker J.D., Spitler J.D.: Heating, Ventilating, and Air Conditioning. Analysis and Design, Sixth Edition. J. Wiley & Sons, Hoboken 2005.Google Scholar

  • [5] Taler D.: Theoretical and Experimental Analysis of Heat Exchangers with Extended Surfaces. Volume 25, Monograph 3, Polish Academy of Sciences, Cracow Branch, Commission of Motorization, Cracow 2002.Google Scholar

  • [6] Taler D.: Dynamics of Tube Heat Exchangers. Monograph 193, UWND Publishing House, AGH , Cracow2009 (in Polish).Google Scholar

  • [7] Taler J., Przybyliński P.: Heat transfer by round fins of variable conduction and non-uniform heat transfer coefficient. Chem. Process Eng. 3(1982), 3-4, 659-676.Google Scholar

  • [8] Rup K., Taler J.: Warmeubergang an Rippenrohren und Membranheizflachen. Brennstoff-Warme-Kraft 41(1989), 3, 90-95.Google Scholar

  • [9] Taler J., Duda P.: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin 2006.Google Scholar

  • [10] Acharya S., Baliga B., Karki K., Murthy J. Y., Prakash C., and Vanka S.P.: Pressure-based finite-volume methods in computational fluid dynamics. T. ASME J. Heat Trans. 129(2007),407-424.Google Scholar

  • [11] Taler D., Korzeń A., Madejski P.: Determining tube temperature in platen superheater tubes in CFB boilers. Rynek Energii 2(93) (2011), 56-60.Google Scholar

  • [12] Schmidt Th.E.: Heat transfer calculations for extended surfaces. Refig. Eng., 1949, 351-357.Google Scholar

  • [13] Zabronsky H.: Temperature distribution and efficiency of a heat exchanger using square fins on round tubes. T. ASME J. Appl. Mech, 22(1955), 119.Google Scholar

  • [14] Carrier W.H., Anderson S.W.: The resistance of heat flow through finned tubing. Heating, Piping, and Air Conditioning, May 1944.Google Scholar

  • [15] ASHRAE Handbook. Fundamentals Volume, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta 1997.Google Scholar

  • [16] Schmidt Th.E.: Die Warmeleistung von berippten Oberflachen. Abh. Deutsch. Kaltetechn. Verein No. 4, C.F. Muller, Karlsruhe 1950.Google Scholar

  • [17] Shah R.K., Bell J.K.: Heat Exchangers. In: The CRC Handbook of Mechanical Engineering (F. Kreith, Ed.) Chap. 4.5, 118-164, CRC Press, Boca Raton 1997.Google Scholar

  • [18] Shah R.K., Sekulić D.P.: Fundamentals of Heat Exchanger Design. J. Wiley & Sons, Hoboken 2003.Google Scholar

  • [19] Taler D., Cebula A.: Modeling of flow and thermal processes in compact heat exchangers, Chem. Proces. Eng. 25(2004), 2331-2342 (in Polish).Google Scholar

  • [20] Taler D., Cebula A.: A new method for determination of thermal contact resistance of a fin-to-tube attachment in plate fin-and-tube heat exchangers. Chem. Proces. Eng. 31(2010), 839-855.Google Scholar

  • [21] Taler J., Taler D., Sobota T., Cebula A.: Theoretical and Experimental Study of Flow and Heat Transfer in a Tube Bank. In: Advances in Engineering Research. Vol. 1 (V.M. Petrova Ed.), Chap. 1, 1-56, Nova Science Publisher, Inc., New York 2012.Google Scholar

  • [22] IMSL Math/Library. International Mathematical and Scientific Library. Visual Numerics. Houston 1994.Google Scholar

  • [23] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipies in Fortran 77, 2nd Edn., Cambridge University Press 1996.Google Scholar

  • [24] Taler D.: Direct and Inverse Heat Transfer Problems in Dynamics of Plate Fin and Tube Heat Exchangers. In: Heat Transfer, Mathematical Modelling, Numerical Methods and Information Technology (A. Belmiloudi Ed.), Chap. 3, 77-100, InTech, Rijeka 2011, free online edition:www.intechopen.com.Google Scholar

  • [25] Taler D., Korzeń A.: Modeling of heat transfer in plate fins of complex shape. Rynek Energii 2011, 6(97)(2011), 61-65 (in Polish).Google Scholar

  • [26] ANSYS Fluent, ver 11.0, User Guide ANSYS, Inc., USA. Google Scholar

About the article

Received: 2012-11-12

Revised: 2014-03-24

Published Online: 2014-12-04

Published in Print: 2014-06-01


Citation Information: Archives of Thermodynamics, Volume 35, Issue 2, Pages 117–133, ISSN (Online) 2083-6023, DOI: https://doi.org/10.2478/aoter-2014-0017.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in