Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2006

Neospora caninum and neosporosis — recent achievements in host and parasite cell biology and treatment

  • Andrew Hemphill EMAIL logo and Bruno Gottstein
From the journal Acta Parasitologica

Abstract

Neospora caninum is an apicomplexan parasite, which owes its importance to the fact that it represents the major infectious cause of bovine abortion worldwide. Its life cycle is comprised of three distinct stages: Tachyzoites, representing the proliferative and disease-causing stage, bradyzoites, representing a slowly replicating, tissue cyst-forming stage, and sporozoites, which represent the end product of a sexual process taking place within the intestinal tissue of the final canine host. Tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo, while bradyzoites have been found mainly within the central nervous system. In order to survive, proliferate, and proceed in its life cycle, N. caninum has evolved some amazing features. First, the parasite profits immensely from its ability to interact with, and invade, a large number of host cell types. Secondly, N. caninum exploits its capability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long term survival of not only the parasite but also of the host cell. These three key events (host cell invasion — stage conversion — host cell modulation) represent potential targets for intervention. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are extensively exploited. In this review, we will summarize the present knowledge and achievements related to host cell and parasite cell biology.

[1] Ammann P., Waldvogel A., Breyer I., Esposito M., Müller N., Gottstein B. 2004. The role of B-and T-cell-immunity in toltrazuril-treated C57BL/6 WT, μMT and nude mice experimentally infected with Neospora caninum. Parasitology Research, 93, 178–187. Search in Google Scholar

[2] Athanassakis I., Iconomidou B. 1996. Cytokine production in the serum and spleen of mice from day 6 to 14 of gestation: cytokines/placenta/spleen/serum. Developmental Immunology, 4, 247–255. Search in Google Scholar

[3] Baszler T.V., Adams S., Vander-Schalie J., Mathison B.A., Kostovic M. 2001. Validation of a commercially available monoclonal antibody-based competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to Neospora caninum in cattle. Journal of Clinical Microbiology, 39, 3851–3857. 10.1128/JCM.39.11.3851-3857.2001Search in Google Scholar

[4] Baszler T.V., Knowles D.P., Dubey J.P., Gay J.M., Mathison B.A., McElwain T.F. 1996. Serological diagnosis of bovine neosporosis by Neospora caninum monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology, 34, 1423–1428. Search in Google Scholar

[5] Baszler T.V., Long M.T., McElwain T.F., Mathison B.A. 1999. Interferon-gamma and interleukin-12 mediate protection to acute Neospora caninum infection in BALB/c mice. International Journal for Parasitology, 29, 1635–1646. Search in Google Scholar

[6] Beckers C.J., Dubremetz J.F., Mercereau-Puijalon O., Joiner K.A. 1994. The Toxoplasma gondii rhoptry protein ROP2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. Journal of Cell Biology, 27, 947–961. Search in Google Scholar

[7] Binder E.M., Kim K. 2004. Location, location, location: trafficking and function of secreted proteases of Toxoplasma and Plasmodium. Traffic, 5, 914–924. Search in Google Scholar

[8] Bjerkås I., Mohn S.F., Presthus J. 1984. Unidentified cyst-forming sporozoon causing encephalomyelitis and myositis in dogs. Zeitschrift für Parasitenkunde, 70, 271–274. Search in Google Scholar

[9] Björkman C., Johansson O., Stenlund S., Holmdahl O.J.M., Uggla A. 1996. Neospora species infection in a herd of dairy cattle. Journal of the American Veterinary Medical Association, 208, 1441–1444. Search in Google Scholar

[10] Björkman C., Uggla A. 1999. Serological diagnosis of Neospora caninum infection. International Journal for Parasitology, 29, 1497–1507. Search in Google Scholar

[11] Bohne W., Heesemann J., Gross U. 1994. Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infection and Immunity, 62, 1761–1767. 10.1128/iai.62.5.1761-1767.1994Search in Google Scholar

[12] Butcher B.A., Denkers E.Y. 2002. Mechanism of entry determines the ability of Toxoplasma gondii to inhibit macrophage proin-flammatory cytokine production. Infection and Immunity, 70, 5216–5224. Search in Google Scholar

[13] Buxton D., McAllister M.M., Dubey J.P. 2002. The comparative pathogenesis of neosporosis. Trends in Parasitology, 18, 546–552. Search in Google Scholar

[14] Cannas A., Naguleswaran A., Müller N., Gottstein B., Eperon S., Hemphill A. 2003a. Vaccination of mice against experimental N. caninum infection using NcSAG1-and NcSRS2-based recombinant antigens and DNA-vaccines. Parasitology, 126, 303–312. Search in Google Scholar

[15] Cannas A., Naguleswaran A., Müller N., Gottstein B., Hemphill A. 2003b. Protective effect of vaccination with recombinant microneme protein NcMIC3 in mice following challenge infection with Neospora caninum tachyzoites. Journal of Parasitology, 89, 44–50. Search in Google Scholar

[16] Carruthers V.B. 2002. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Tropica, 81, 111–122. Search in Google Scholar

[17] Carruthers V.B., Blackman M.J. 2005. A new release on life: emerging concepts in proteolysis and parasite invasion. Molecular Microbiology, 55, 1617–1630. Search in Google Scholar

[18] Cesbron-Delauw M.F. 1994. Dense granule organelles of Toxoplasma gondii: their role in the host-parasite relationship. Parasitology Today, 10, 293–296. Search in Google Scholar

[19] Cole R.A., Lindsay D.S., Blagburn B.L., Dubey J.P. 1995. Vertical transmission of Neospora caninum in mice. Journal of Parasitology, 81, 730–732. Search in Google Scholar

[20] Cooper C.E. 1999. Nitric oxide and iron proteins. Biochimica et Biophysica Acta, 1411, 290–309. Search in Google Scholar

[21] Denkers E.Y., Butcher B.A., Del Rio L., Kim L. 2004. Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signaling cascades during intracellular Toxoplasma gondii infection. Immunology Review, 201, 191–205. Search in Google Scholar

[22] Dowse T.J., Pascall J.C., Brown K.D., Soldati D. 2005. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. International Journal for Parasitology, 35, 747–756. Search in Google Scholar

[23] Dowse T.J., Soldati D. 2005. Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends in Parasitology, 21, 254–258. Search in Google Scholar

[24] Dubey J.P. 2003. Review of Neospora caninum and neosporosis in animals. Korean Journal of Parasitology, 41, 1–16. http://dx.doi.org/10.3347/kjp.2003.41.1.110.3347/kjp.2003.41.1.1Search in Google Scholar

[25] Dubey J.P., Barr B.C., Barta J.R., Bjerkås I., Björkman C., Blagburn B.L., Bowman D.D., Buxton D., Ellis J.T., Gottstein B., Hemphill A., Hill D.E., Howe D.K., Jenkins M.C., Kobayashi Y., Koudela B., Marsh A.E., Mattsson J.G., McAllister M.M., Modrý D., Omata Y., Sibley L.D., Speer C.A., Trees A.J., Uggla A., Upton S.J., Williams D.J.L., Lindsay D.S. 2002. Redescription of Neospora caninum and its differentiation from related coccidia. International Journal for Parasitology, 32, 929–946. Search in Google Scholar

[26] Dubey J.P., Carpenter J.L., Speer C.A., Topper M.J., Uggla A. 1988a. Newly recognized fatal protozoan disease of dogs. Journal of the American Veterinary Medical Association, 192, 1269–1285. Search in Google Scholar

[27] Dubey J.P., Hattel A.L., Lindsay D.S., Topper M.J. 1988b. Neonatal Neospora caninum infection in dogs: Isolation of the causative agent and experimental transmission. Journal of the American Veterinary Medical Association, 193, 1259–1263. Search in Google Scholar

[28] Dubey J.P., Lindsay D.S. 1996. A review of Neospora caninum and neosporosis. Veterinary Parasitology, 67, 1–59. Search in Google Scholar

[29] Eperon S., Broennimann K., Hemphill A., Gottstein B. 1999. Susceptibility of B-cell deficient C57BL/6 (μMT) mice to Neospora caninum infection. Parasite Immunology, 21, 225–236. Search in Google Scholar

[30] Fernández-García A., Risco-Castillo V., Zaballos A., Álvarez-García G., Ortega-Mora L.M. 2006. Identification and molecular cloning of the Neospora caninum SAG4 gene specifically expressed at bradyzoite stage. Molecular & Biochemical Parasitology, 146, 89–97. Search in Google Scholar

[31] Fuchs N., Bütikofer P., Sonda S., Hemphill A. 1999. Detection of surface-associated and intracellular glycoconjugates and glycoproteins in Neospora caninum tachyzoites. International Journal for Parasitology, 29, 1597–1611. Search in Google Scholar

[32] Goebel S., Gross U., Luder C.G. 2001. Inhibition of host cell apoptosis by Toxoplasma gondii is accompanied by reduced activation of the caspase cascade and alterations of poly(ADP-ribose) polymerase expression. Journal of Cell Science, 114, 3495–3505. 10.1242/jcs.114.19.3495Search in Google Scholar

[33] Gondim L.F.P., McAllister M.M., Pitt W.C., Zemlicka D.E. 2004. Coyotes (Canis latrans) are definitive hosts of Neospora caninum. International Journal for Parasitology, 34, 159–161. Search in Google Scholar

[34] Gottstein B., Eperon S., Dai W.J., Cannas A., Hemphill A., Greif G. 2001. Efficacy of toltrazuril and ponazuril against experimental Neospora caninum infection in mice. Parasitology Research, 87, 43–48. Search in Google Scholar

[35] Gottstein B., Razmi G.R., Ammann P., Sager H., Müller N. 2005. Toltrazuril treatment to control diaplacental Neospora caninum transmission in experimentally infected pregnant mice. Parasitology, 130, 41–48. Search in Google Scholar

[36] Greif G. 2000. Immunity to coccidiosis after treatment with toltrazuril. Parasitology Research, 86, 787–790. Search in Google Scholar

[37] Greif G., Harder A., Haberkorn A. 2001. Chemotherapeutic approaches to protozoa: Coccidiae — current level of knowledge and outlook. Parasitology Research, 87, 973–975. Search in Google Scholar

[38] Haldorson G.J., Mathison B.A., Wenberg K., Conrad P.A., Dubey J.P., Trees A.J., Yamane I., Baszler T.V. 2005. Immunization with native surface protein NcSRS2 induces a Th2 immune response and reduces congenital Neospora caninum transmission in mice. International Journal for Parasitology, 35, 1407–1415. Search in Google Scholar

[39] Harder A., Haberkorn A. 1989. Possible mode of action of toltrazuril: studies on two Eimeria species and mammalian and Ascaris suum enzymes. Parasitology Research, 76, 8–12. Search in Google Scholar

[40] Hemphill A. 1996. Subcellular localization and functional characterization of Nc-p43, a major Neospora caninum tachyzoite surface protein. Infection and Immunity, 64, 4279–4287. Search in Google Scholar

[41] Hemphill A. 1999. The host-parasite relationship in neosporosis. Advances in Parasitology, 43, 47–104. Search in Google Scholar

[42] Hemphill A., Gajendran N., Sonda S., Fuchs N., Gottstein B., Hentrich B., Jenkins M. 1998. Identification and characterisation of a dense granule-associated protein in Neospora caninum tachyzoites. International Journal for Parasitology, 28, 429–438. Search in Google Scholar

[43] Hemphill A., Gottstein B. 2000. A European perspective on Neospora caninum. International Journal for Parasitology, 30, 877–924. Search in Google Scholar

[44] Hemphill A., Gottstein B., Kaufmann H. 1996. Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology, 112, 183–197. http://dx.doi.org/10.1017/S003118200008475410.1017/S0031182000084754Search in Google Scholar

[45] Hemphill A., Vonlaufen N., Naguleswaran A., Keller N., Riesen M., Guetg N., Srinivasan S., Alaeddine F. 2004. Tissue culture and explant approaches to studying and visualizing Neospora caninum and its interactions with the host cell. Microscopy and Microanalysis, 10, 602–620. Search in Google Scholar

[46] Heussler V., Küenzi P., Rottenberg S. 2001. Inhibition of apoptosis by intracellular protozoan parasites. International Journal for Parasitology, 31, 1166–1176. Search in Google Scholar

[47] Heydorn A.O., Mehlhorn H. 2002. A re-evaluation of Neospora and Hammondia spp. Trends in Parasitology, 18, 246. Search in Google Scholar

[48] Hisaeda H., Sakai T., Ishikawa H., Maekawa Y., Yasumoto K., Good R.A., Himeno K. 1997. Heat shock protein 65 induced by gamma delta T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. Journal of Immunology, 159, 2375–2378. Search in Google Scholar

[49] Hisaeda H., Sakai T., Nagasawa H., Ishikawa H., Yasutomo K., Maekawa Y., Himeno K. 1996. Contribution of extrathymic gamma delta T cells to the expression of heat-shock protein and to protective immunity in mice infected with Toxoplasma gondii. Immunology, 88, 551–557. Search in Google Scholar

[50] Howe D.K., Crawford A.C., Lindsay D., Sibley L.D. 1998. The p29 and p35 immunodominant antigens of Neospora caninum tachyzoites are homologous to the family of surface antigens of Toxoplasma gondii. Infection and Immunity, 66, 5322–5328. 10.1128/IAI.66.11.5322-5328.1998Search in Google Scholar

[51] Innes E.A., Andrianarivo A.G., Björkman C., Williams D.J., Conrad P.A. 2002. Immune responses to Neospora caninum and prospects for vaccination. Trends in Parasitology, 18, 497–504. Search in Google Scholar

[52] Innes E.A., Buxton D., Eperon S., Gottstein B. 2000. Immunology of Neospora caninum infection in cattle and mice. International Journal for Parasitology, 30, 896–900. Search in Google Scholar

[53] Innes E.A., Wright S., Bartley P., Maley S., Macaldowie C., Esteban Redondo I., Buxton D. 2005. The host-parasite relationship in bovine neosporosis. Veterinary Immunology and Immunopathology, 108, 29–36. Search in Google Scholar

[54] Keeley A., Soldati D. 2004. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology, 14, 528–532. Search in Google Scholar

[55] Keller N., Naguleswaran A., Cannas A., Vonlaufen N., Bienz M., Björkman C., Bohne W., Hemphill A. 2002. Identification of a Neospora caninum microneme protein (NcMIC1) which interacts with sulfated host cell surface glycosaminoglycans. Infection and Immunity, 70, 3187–3198. Search in Google Scholar

[56] Keller N., Riesen M., Naguleswaran A., Vonlaufen N., Stettler R., Leepin A., Wastling J.M., Hemphill A. 2004. Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC4) that exhibits unique lactose-binding properties. Infection and Immunity, 72, 4791–4800. Search in Google Scholar

[57] Khan I.A., Schwartzman J.D., Fonseka S., Kasper L.H. 1997. Neospora caninum: role for immune cytokines in host immunity. Experimental Parasitology, 85, 24–34. Search in Google Scholar

[58] Kim K. 2004. Role of proteases in host cell invasion by Toxoplasma gondii and other apicomplexa. Acta Tropica, 91, 69–81. Search in Google Scholar

[59] Kirkman L.A., Weiss L.M., Kim K. 2001. Cyclic nucleotide signaling in Toxoplasma gondii bradyzoite differentiation. Infection and Immunity, 69, 148–153. Search in Google Scholar

[60] Kritzner S., Sager H., Blum J., Krebber R., Greif G., Gottstein B. 2002. An explorative study to assess the efficacy of Toltrazuril-sulfone (Ponazuril) in calves experimentally infected with Neospora caninum. Annals of Clinical Microbiology and Antimicrobials, 1:4. Search in Google Scholar

[61] Lecordier L., Mercier C., Sibley L.D., Cesbron-Delauw M.F. 1999. Transmembrane insertion of the Toxoplasma gondii GRA5 protein occurs after soluble secretion into the host cell. Molecular Biology of the Cell, 10, 1277–1287. Search in Google Scholar

[62] Liddell S., Jenkins M., Collica C.M., Dubey J.P. 1999. Prevention of vertical transfer of Neospora caninum in BALB/c mice by vaccination. Journal of Parasitology, 85, 1072–1075. Search in Google Scholar

[63] Lindsay D.S., Dubey J.P., Duncan R.B. 1999. Confirmation that the dog is a definitive host for Neospora caninum. Veterinary Parasitology, 82, 327–333. Search in Google Scholar

[64] Lindsay D.S., Rippey N.S., Cole R.A., Parsons L.C., Dubey J.P., Tidwell R.R., Blagburn B.L. 1994. Examination of the activities of 43 chemotherapeutic agents against Neospora caninum tachyzoites in cultured cells. American Journal of Veterinary Research, 55, 976–981. Search in Google Scholar

[65] Long M.T., Baszler T.V. 2000. Neutralization of maternal IL-4 modulates congenital protozoal transmission: comparison of innate versus acquired immune responses. Journal of Immunology, 164, 4768–4774. Search in Google Scholar

[66] Lovett J.L., Howe D.K., Sibley L.D. 2000. Molecular characterization of a thrombospondin-related anonymous protein homologue in Neospora caninum. Molecular & Biochemical Parasitology, 107, 33–43. Search in Google Scholar

[67] Luder C.G., Algner M., Lang C., Bleicher N., Gross U. 2003a. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages. International Journal for Parasitology, 33, 833–844. Search in Google Scholar

[68] Luder C.G., Lang C., Giraldo-Velasquez M., Algner M., Gerdes J., Gross U. 2003b. Toxoplasma gondii inhibits MHC class II expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA. Journal of Neuroimmunology, 134, 12–24. 10.1016/S0165-5728(02)00320-XSearch in Google Scholar

[69] Luder C.G., Walter W., Beuerle B., Maeurer M.J., Gross U. 2001. Toxoplasma gondii down-regulates MHC class II gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1alpha. European Journal of Immunology, 31, 1475–1484. 10.1002/1521-4141(200105)31:5<1475::AID-IMMU1475>3.0.CO;2-CSearch in Google Scholar

[70] McAllister M.M., Dubey J.P., Lindsay D.S., Jolley W.R., Wills R.A., McGuire A.M. 1998. Dogs are definitive hosts of Neospora caninum. International Journal for Parasitology, 28, 1473–1478. Search in Google Scholar

[71] Mercier C., Adjogble K.D.Z., Daubener W., Delauw M.F.C. 2005. Dense granules: Are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? International Journal for Parasitology, 35, 829–849. Search in Google Scholar

[72] Molestina R.E., Payne T.M., Coppens I., Sinai A.P. 2003. Activation of NF-kappaB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IkappaB to the parasitophorous vacuole membrane. Journal of Cell Science, 116, 4359–4371. Search in Google Scholar

[73] Molestina R.E., Sinai A.P. 2005. Detection of a novel parasite kinase activity at the Toxoplasma gondii parasitophorous vacuole membrane capable of phosphorylating host IkBα. Cellular Microbiology, 7, 351–362. Search in Google Scholar

[74] Mordue D.G., Desai N., Dustin M., Sibley L.D. 1999. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. Journal of Experimental Medicine, 190, 1783–1792. Search in Google Scholar

[75] Mordue D.G., Sibley L.D. 1997. Intracellular fate of vacuoles containing Toxoplasma gondii is determined at the time of formation and depends on the mechanism of entry. Journal of Immunology, 159, 4452–4459. Search in Google Scholar

[76] Naguleswaran A., Alaeddine F., Guionaud C., Vonlaufen N., Sonda S., Jenoe P., Mevissen M., Hemphill A. 2005. Neospora caninum protein disulfide isomerase is involved in tachyzoite-host cell interaction. International Journal for Parasitology, 35, 1459–1472. Search in Google Scholar

[77] Naguleswaran A., Cannas A., Keller N., Vonlaufen N., Björkman C., Hemphill A. 2002. Vero cell surface proteoglycan interaction with the microneme protein NcMIC3 mediates adhesion of Neospora caninum tachyzoites to host cells unlike that in Toxoplasma gondii. International Journal for Parasitology, 32, 695–704. 10.1016/S0020-7519(02)00014-0Search in Google Scholar

[78] Naguleswaran A., Cannas A., Keller N., Vonlaufen N., Schares G., Conraths F.J., Björkman C., Hemphill A. 2001. Neospora caninum microneme protein NcMIC3: Secretion, subcellular localization and functional involvement in host cell interaction. Infection and Immunity, 69, 6483–6494. 10.1128/IAI.69.10.6483-6494.2001Search in Google Scholar

[79] Naguleswaran A., Müller N., Hemphill A. 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Experimental Parasitology, 104, 149–158. 10.1016/S0014-4894(03)00137-1Search in Google Scholar

[80] Nishikawa Y., Inoue N., Xuan X., Nagasawa H., Igarasha I., Fujisaka K., Otsuka H., Mikami T. 2001a. Protective vaccination by recombinant vaccinia virus against Neospora caninum infection. Vaccine, 19, 1381–1390. Search in Google Scholar

[81] Nishikawa Y., Xuan X., Nagasawa H., Igarashi I., Fujisaki K., Otsuka H., Mikami T. 2001b. Prevention of vertical transmission of Neospora caninum in BALB/c mice by recombinant vaccinia virus carrying NcSRS2 gene. Vaccine, 19, 1710–1716. Search in Google Scholar

[82] Nishikawa Y., Mishima M., Nagasawa H., Igarashi I., Fujisaki K., Otsuka H., Mikami T. 2001c. Interferon gamma induced apoptosis in host cells infected with Neospora caninum. Parasitology, 123, 25–31. Search in Google Scholar

[83] Nishikawa Y., Tragoolpua K., Inoue N., Makala L., Nagasawa H., Otsuka H., Mikami T. 2001d. In the absence of endogenous gamma interferon, mice acutely infected with Neospora caninum succumb to lethal immune response characterized by inactivation of peritoneal macrophages. Clinical Diagnostic Laboratory Immunology 8, 811–816. Search in Google Scholar

[84] Nishikawa Y., Makala L., Otsuka H., Mikami T., Nagasawa H. 2002. Mechanisms of apoptosis in murine fibroblasts by two intracellular protozoan parasites, Toxoplasma gondii and Neospora caninum. Parasite Immunology, 24, 347–354. Search in Google Scholar

[85] Nishikawa Y., Xuan X., Nagasawa H., Igarashi I., Fujisaki K., Otsuka H., Mikami T. 2000. Monoclonal antibody inhibition of Neospora caninum tachyzoite invasion into host cells. International Journal for Parasitology, 30, 51–58. Search in Google Scholar

[86] Opitz C., Soldati D. 2002. ’The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular Microbiology, 45, 597–604. Search in Google Scholar

[87] Peters M., Lütkefels E., Heckeroth A.R., Schares G. 2001. Immunohistochemical and ultrastructural evidence for Neospora caninum tissue cysts in skeletal muscles of naturally infected dogs and cattle. International Journal for Parasitology, 31, 1144–1148. Search in Google Scholar

[88] Quinn H.E., Ellis J.T., Smith N.C. 2002. Neospora caninum: a cause of immune-mediated failure of pregnancy? Trends in Parasitology, 18, 391–394. Search in Google Scholar

[89] Rettigner C., De Meerschman F., Focant C., Vanderplasschen A., Losson B. 2004. The vertical transmission following the reactivation of a Neospora caninum chronic infection does not seem to be due to an alteration of the systemic immune response in pregnant CBA/Ca mice. Parasitology, 128, 149–160. 10.1017/S0031182003004402Search in Google Scholar

[90] Risco-Castillo V., Fernández-García A., Ortega-Mora L.M. 2004. Comparative analysis of stress agents in a simplified in vitro system of Neospora caninum bradyzoite production. Journal of Parasitology, 90, 466–470. Search in Google Scholar

[91] Ritter D.M., Kerlin R., Sibert G., Brake D. 2002. Immune factors influencing the course of infection with Neospora caninum in the murine host. Journal of Parasitology, 88, 271–280. Search in Google Scholar

[92] Shibahara T., Kokuho T., Eto M., Haritani M., Hamaoka T., Shimura K., Nakamura K., Yokomizo Y., Yamane I. 1999. Pathological and immunological findings of athymic nude and congenic wild type BALB/c mice experimentally infected with Neospora caninum. Veterinary Pathology, 36, 321–327. Search in Google Scholar

[93] Sinai A.P., Joiner K. 2001. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. Journal of Cell Biology, 154, 95–108. Search in Google Scholar

[94] Sinai A.P., Payne T.M., Carmen J.C., Hardi L., Watson S.J., Molestina R.E. 2004. Mechanisms underlying the manipulation of host apoptotic pathways by Toxoplasma gondii. International Journal for Parasitology, 34, 381–391. Search in Google Scholar

[95] Sinai A.P., Webster P., Joiner K. 1997. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. Journal of Cell Science, 110, 2117–2128. Search in Google Scholar

[96] Soete M., Camus D., Dubremetz J.F. 1994. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Experimental Parasitology, 78, 361–370. Search in Google Scholar

[97] Soldati D., Dubremetz J.F., Lebrun M. 2001. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International Journal for Parasitology, 31, 1293–1302. Search in Google Scholar

[98] Sonda S., Fuchs N., Connolly B., Fernandez P., Gottstein B., Hemphill A. 1998. The major 36 kDa Neospora caninum tachyzoite surface protein is closely related to the major Toxoplasma gondii surface antigen 1. Molecular & Biochemical Parasitology, 97, 97–108. Search in Google Scholar

[99] Sonda S., Fuchs N., Gottstein B., Hemphill A. 2000. Molecular characterization of a novel microneme antigen in Neospora caninum. Molecular & Biochemical Parasitology, 108, 39–51. Search in Google Scholar

[100] Speer C.A., Dubey J.P., McAllister M.M., Blixt J.A. 1999. Comparative ultrastructure of tachyzoites, bradyzoites, and tissue cysts of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology, 29, 1509–1519. Search in Google Scholar

[101] Tenter A.M., Johnson A.M. 1997. Phylogeny of the tissue cyst-forming coccidia. Advances in Parasitology, 39, 69–139. http://dx.doi.org/10.1016/S0065-308X(08)60045-710.1016/S0065-308X(08)60045-7Search in Google Scholar

[102] Thurmond M.C., Hietala S.K. 1997. Effect of Neospora caninum infection on milk production in first-lactation dairy cows. Journal of the American Veterinary Medical Association, 210, 672–674. Search in Google Scholar

[103] Tomley F.M., Soldati D.S. 2001. Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends in Parasitology, 17, 81–88. Search in Google Scholar

[104] Trees A.J., McAllister M.M., Guy C.S., McGarry J.W., Smith R.F., Williams D.J. 2002. Neospora caninum: oocyst challenge of pregnant cows. Veterinary Parasitology, 109, 147–154. Search in Google Scholar

[105] Tunev S.S., McAllister M.M., Anderson-Sprecher R.C., Weiss L.M. 2002. Neospora caninum in vitro: evidence that the destiny of a parasitophorous vacuole depends on the phenotype of the progenitor zoite. Journal of Parasitology, 88, 1095–1099. Search in Google Scholar

[106] Uchida Y., Ike K., Kurotaki T., Ito A., Imai S. 2004. Monoclonal antibodies preventing invasion of Neospora caninum tachyzoites into host cells. Journal of Veterinary Medical Science, 66, 1355–1358. Search in Google Scholar

[107] Vonlaufen N., Guetg N., Naguleswaran A., Müller N., Björkman C., Schares G., von Blumroeder D., Ellis J., Hemphill A. 2004. In vitro induction of Neospora caninum bradyzoites in Vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity, 72, 576–583. 10.1128/IAI.72.1.576-583.2004Search in Google Scholar PubMed PubMed Central

[108] Vonlaufen N., Müller N., Keller N., Naguleswaran A., Bohne W., McAllister M.M., Björkman C., Müller E., Caldelari R., Hemphill A. 2002. Exogenous nitric oxide triggers Neospora caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures. International Journal for Parasitology, 32, 1253–1265. Search in Google Scholar

[109] Weiss L.M., Ma Y.F., Halonen S., McAllister M.M., Zhang Y.W. 1999. The in vitro development of Neospora caninum bradyzoites. International Journal for Parasitology, 29, 1713–1723. Search in Google Scholar

[110] Williams D.J., Guy C.S., McGarry J.W., Guy F., Tasker L., Smith R.F., MacEachern K., Cripps P.J., Kelly D.F., Trees A.J. 2000. Neospora caninum-associated abortion in cattle: the time of experimentally-induced parasitaemia during gestation determines foetal survival. Parasitology, 121, 347–358. 10.1017/S0031182099006587Search in Google Scholar PubMed

[111] Yamage M., Flechtner O., Gottstein B. 1996. Neospora caninum: specific oligonucleotide primers for the detection of brain “cyst” DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). Journal of Parasitology, 82, 272–279. 10.2307/3284160Search in Google Scholar

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 W. Stefański Institute of Parasitology, PAS

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11686-006-0002-z/html
Scroll to top button