Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 51, Issue 2


Distribution patterns and interactions of cestodes in the spiral intestine of the narrownose smooth-hound shark, Mustelus schmitti Springer, 1939 (Chondrichthyes, Carcharhiniformes)

Ana Alarcos
  • Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
  • Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Verónica Ivanov
  • Laboratorio de Helmintología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, piso 4, (C1428EHA), Buenos Aires, Argentina
  • Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Norma Sardella
  • Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
  • Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-06-01 | DOI: https://doi.org/10.2478/s11686-006-0015-7


The distribution patterns and the cestode species interactions within the spiral intestine of 20 specimens of Mustelus schmitti from coastal waters off Mar del Plata, Argentina were studied. Six cestode species were found: Tetraphyllideans Calliobothrium barbarae, C. australis, C. lunae and Orygmatobothrium schmittii, diphyllidean Echinobothrium notoguidoi and trypanorhynch Eutetrarhynchus vooremi. The most common number of parasite species per host was 3. Brillouin’s diversity index ranged from 0.1 to 1.2 Berger-Parker dominance index indicated that C. barbarae was the dominant species, followed by O. schmittii and C. australis. Calliobothrium barbarae, C. australis and O. schmittii presented a broad distribution along the spiral intestine, whereas C. lunae, E. notoguidoi and E. vooremi showed a more restricted niche breadth. In general, the Renkonen’s index showed no evidence of niche overlap in the range of distribution of the different species. In most of the infracommunities, intraspecific aggregation was stronger than interspecific aggregation, indicating that competition may play a little role. The distribution patterns of the Calliobothrium specimens concurs with the predictions of attachment sites for Calliobothrium species made by previous authors.

Keywords: Cestodes; Mustelus schmitti; spiral intestine; interactions; distribution patterns

  • [1] Borucinska J., Caira J.N. 1993. A comparison of mode of attachment and histopathogenicity of four tapeworm species representing two orders infecting the spiral intestine of the nurse shark, Ginglymostoma cirratum. Journal of Parasitology, 79, 238–246. http://dx.doi.org/10.2307/3283514CrossrefGoogle Scholar

  • [2] Brooks D.R. 1980. Allopatric speciation and non-interactive parasite community structure. Systematic Zoology, 29, 192–203. http://dx.doi.org/10.2307/2412649CrossrefGoogle Scholar

  • [3] Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. http://dx.doi.org/10.2307/3284227CrossrefGoogle Scholar

  • [4] Capitoli R.R., Ruffino M.L., Vooren C.M. 1995. Alimentacão do Tubarão Mustelus schmitti Springer na plataforma costeira do estado do Rio Grande do Sul, Brasil. Atlântica, 17, 109–122. Google Scholar

  • [5] Carvajal J., Dailey M.D. 1975. Three new species of Echeneibothrium (Cestoda: Tetraphyllidea) from the skate, Raja chilensis Guichenot, 1848, with comments on mode of attachment and host specificity. Journal of Parasitology, 61, 89–94. http://dx.doi.org/10.2307/3279115CrossrefGoogle Scholar

  • [6] Chiaramonte G.E., Pettovello A.D. 2000. The biology of Mustelus schmitti in southern Patagonia, Argentina. Journal of Fish Biology, 57, 930–942. http://dx.doi.org/10.1111/j.1095-8649.2000.tb02202.xCrossrefGoogle Scholar

  • [7] Cislo P.R., Caira J.N. 1993. The parasite assemblage in the spiral intestine of the shark Mustelus canis. Journal of Parasitology, 79, 886–899. http://dx.doi.org/10.2307/3283727CrossrefGoogle Scholar

  • [8] Compagno L.J.V. 1988. Sharks of the order Carcharhiniformes. Princeton University Press, Princeton, New York. Google Scholar

  • [9] Crompton D.W.T. 1973. The sites occupied by some parasitic helminths in the alimentary tract of vertebrates. Biological Reviews, 48, 27–83. CrossrefGoogle Scholar

  • [10] Curran S., Caira J.N. 1995. Attachment site specificity and the tapeworm assemblage in the spiral intestine of the blue shark (Prionace glauca). Journal of Parasitology, 81, 149–157. http://dx.doi.org/10.2307/3283913CrossrefGoogle Scholar

  • [11] Euzet L. 1959. Recherches sur les cestodes tétraphyllides des sélaciens des côtes de France. PhD Thesis, Faculté des Sciences, Université de Montpellier, Montpellier. Google Scholar

  • [12] Holmes J.C. 1990. Helminth communities in marine fishes. In: Parasite communities: Patterns and processes (Eds. G.W. Esch, A.O. Bush and J.M. Aho). Chapman and Hall, London, 101–130. Google Scholar

  • [13] Holmes J.C., Price P.W. 1986. Communities of parasites. In: Community ecology: Patterns and processes (Eds. D.J. Andersen and J. Kikkawa). Blackwell Scientific Publications, Oxford, 187–213. Google Scholar

  • [14] Ivanov V.A. 1996. Ecología de helmintos parásitos de peces marinos. PhD Thesis, Facultad de Ciencias Exactas y Naturales, U.N.L.P. Google Scholar

  • [15] Ivanov V.A. 1997. Echinobothrium notoguidoi n. sp. (Cestoda: Diphyllidea) from Mustelus schmitti (Chondrichthyes: Carcharhiniformes) in the Argentine Sea. Journal of Parasitology, 83, 913–916. http://dx.doi.org/10.2307/3284288CrossrefGoogle Scholar

  • [16] Ivanov V.A., Brooks D. 2002. Calliobothrium spp. (Eucestoda: Tetraphyllidea: Onchobothriidae) in Mustelus schmitti (Chondrichthyes: Carcharhiniformes) from Argentina and Uruguay. Journal of Parasitology, 88, 1200–1213. http://dx.doi.org/10.1645/0022-3395(2002)088[1200:CSETOI]2.0.CO;2CrossrefGoogle Scholar

  • [17] Krasnov B.R., Shenbrot G.I., Khokhlova I.S., Poulin R. 2004. Relationships between parasite abundance and the taxonomic distance among a parasite’s host species: an example with fleas parasitic on small mammals. International Journal for Parasitology, 34, 1289–1297. http://dx.doi.org/10.1016/j.ijpara.2004.08.003CrossrefGoogle Scholar

  • [18] Magurran A.E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton. Google Scholar

  • [19] McKenzie V.J., Caira J.N. 1998. Three new genera and species of tapeworms from the longnose sawshark, Pristiophorus cirratus, with comments on their modes of attachment to the spiral intestine. Journal of Parasitology, 84, 409–421. http://dx.doi.org/10.2307/3284503CrossrefGoogle Scholar

  • [20] Mettrick D.F. 1980. The intestine as an environment for Hymenolepis diminuta. In: Biology of the tapeworm Hymenolepis diminuta (Ed. H.P. Arai). Academic Press, Inc., New York, 281–356. Google Scholar

  • [21] Morand S., Poulin R., Rhode K., Hayward C. 1999. Aggregation and species coexistence of ectoparasites of marine fishes. International Journal for Parasitology, 29, 663–672. http://dx.doi.org/10.1016/S0020-7519(99)00029-6CrossrefGoogle Scholar

  • [22] Nasin C.S., Caira J.N., Euzet L. 1997. Analysis of Calliobothrium (Tetraphyllidea: Onchobothriidae) with descriptions of three new species and erection of a new genus. Journal of Parasitology, 83, 714–733. http://dx.doi.org/10.2307/3284252CrossrefGoogle Scholar

  • [23] Poulin R. 1998. Evolutionary ecology of parasites: From individuals to communities. Chapman and Hall, London. Google Scholar

  • [24] Price P.W. 1980. Evolutionary biology of parasites. Princeton University Press, Princeton. Google Scholar

  • [25] Price P.W. 1984. Communities of specialists: vacant niches in ecological and evolutionary time. In: Communities: Conceptual issues and evidence (Eds. D.R. Jr. Shong, D. Simberloff, L.G. Abele and A.B. Thistle). Princeton University Press, Princeton, 510–523. Google Scholar

  • [26] Rohde K. 1979. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist, 114, 648–671. http://dx.doi.org/10.1086/283514CrossrefGoogle Scholar

  • [27] Schoener T.W. 1974. Resource partitioning in ecological communities. Science, 185, 27–39. http://dx.doi.org/10.1126/science.185.4145.27CrossrefGoogle Scholar

  • [28] Simková A., Desdevises Y., Gelnar M., Morand S. 2000. Co-existence of nine gill ectoparasites (Cactylogyrus: Monogenea) parasitising the roach (Rutilus rutilus L.): history and present ecology. International Journal for Parasitology, 30, 1077–1088. http://dx.doi.org/10.1016/S0020-7519(00)00098-9CrossrefGoogle Scholar

  • [29] Stock T.M., Holmes J.C. 1987. Dioecocestus asper (Cestoda: Dioecocestidae): an interference competitor in an enteric helminth community. Journal of Parasitology, 73, 1116–1123. http://dx.doi.org/10.2307/3282291CrossrefGoogle Scholar

  • [30] Suriano M., Labriola J.B. 2001. A new Orygmatobothrium Diesing, 1863 (Eucestoda, Tetraphyllidea) parasite of Mustelus schmitti Springer, 1939 (Carcharhiniformes, Triakidae) from the southwestern Atlantic Ocean. Zoosystema, 23, 669–674. Google Scholar

  • [31] Vianna M., Arfelli C.A., de Amorim A.F. 2000. Feeding of Mustelus canis (Elasmobranchii, Triakidae) caught off south-southeast coast of Brazil. Boletim do Instituto de Pesca, 26, 79–84. Google Scholar

  • [32] Williams H.H. 1960. The intestine in members of the genus Raja and host-specificity in the Tetraphyllidea. Nature, 188, 514–516. http://dx.doi.org/10.1038/188514b0CrossrefGoogle Scholar

  • [33] Williams H.H. 1968. Phyllobothrium piriei sp. nov. (Cestoda: Tetraphyllidea) from Raja naevus with a comment on its habitat and mode of attachment. Parasitology, 58, 929–937. http://dx.doi.org/10.1017/S0031182000069699CrossrefGoogle Scholar

  • [34] Williams H.H., McVicar A.H., Ralph R. 1970. The alimentary canal of fish as an environment for helminth parasites. In: Aspects of fish parasitology (Eds. A.E.R. Taylor and R. Muller). Symposia of the British Society for Parasitology, 8, 43–77. Google Scholar

  • [35] Zar J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey. Google Scholar

About the article

Published Online: 2006-06-01

Published in Print: 2006-06-01

Citation Information: Acta Parasitologica, Volume 51, Issue 2, Pages 100–106, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-006-0015-7.

Export Citation

© 2006 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Philippe V. Alves, Alain de Chambrier, Tomáš Scholz, and José L. Luque
ZooKeys, 2017, Volume 650, Page 1
R. V. Salyutin, D. B. Dombrowski, M. P. Komarov, N. F. Sokolov, S. S. Palyanitsya, and V. A. Shabliy
Cell and Organ Transplantology, 2014, Volume 2, Number 1
Janine N. Caira and Kirsten Jensen
Journal of Parasitology, 2014, Volume 100, Number 4, Page 373

Comments (0)

Please log in or register to comment.
Log in