Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 52, Issue 1

Issues

Mechanisms of pathogenesis in Chagas disease

Felipe Kierszenbaum
Published Online: 2007-03-01 | DOI: https://doi.org/10.2478/s11686-006-0048-y

Abstract

Chagas disease, caused by the obligate unicellular parasite Trypanosoma cruzi, presents itself in a diverse collection of clinical manifestations, ranging from severe, fatal heart and digestive tract pathologies to unapparent or minor alterations that do not compromise survival. Over the years, a number of mechanisms have been proposed to explain the pathogenesis of chagasic tissue lesions, all of which have faced some criticism or been received with skepticism. This article excludes the autoimmunity hypothesis for Chagas disease because it has been extensively reviewed elsewhere, and summarizes the various alternative hypotheses that have been advanced over the years. For each of these hypotheses, an outline of its main tenets and key findings that support them is presented. This is followed by the results and comments that have challenged them and the caveats that stand on their way to wider acceptance. It is hoped that this writing will draw attention to our shortcomings in understanding the pathogenesis of Chagas disease, which, unfortunately, continues to figure among the most serious health problems of the American continent.

Keywords: Chagas disease; Trypanosoma cruzi; pathogenesis; pathology

  • [1] Amorim D.S., Manço J.C., Gallo L., Marin Neto J.A. 1979. Clinica: forma cronica cardíaca. In: Trypoanosoma cruzi e Doença de Chagas (Eds. Z. Brener and Z.A. Andrade). Guanabara Koogan, Rio de Janeiro, 265–311. Google Scholar

  • [2] Amorim D.S., Olsen E.G. 1982. Assessment of heart neurons in dilated (congestive) cardiomyopathy. British Heart Journal, 47, 11–18. CrossrefGoogle Scholar

  • [3] Andrade Z.A. 1999. Immunopathology of Chagas disease. Memorias do Instituto Oswaldo Cruz, 94,Suppl. 1, 71–80. CrossrefGoogle Scholar

  • [4] Andrade S.G., Magalhaes J.B. 1996. Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology. Revista do Sociedad Brasileira de Medicina Tropical, 30, 27–35. Google Scholar

  • [5] Andrade S.G., Pimentel A.R., Souza M.M. de, Andrade Z.A. 2000. Interstitial dendritic cells of the heart harbor Trypanosoma cruzi antigens in experimentally infected dogs: importance for the pathogenesis of chagasic myocarditis. American Journal of Tropical Medicine and Hygiene, 63, 64–70. Google Scholar

  • [6] Andrade Z.A., Andrade S.G. 1979. Patologia. In: Trypanosoma cruzi e Doença de Chagas (Eds. Z. Brener and Z.A. Andrade). Guanabara Koogan, Rio de Janeiro, 199–248. Google Scholar

  • [7] Andrade Z.A., Andrade S.G., Correa R., Sadigursky M., Ferrans V.J. 1994. Myocardial changes in acute Trypanosoma cruzi infection — ultrastructural evidence of immune damage and the role of microangiopathy. American Journal of Pathology, 144, 1403–1411. Google Scholar

  • [8] Araujo-Jorge T.C. de 1989. The biology of Trypanosoma cruzi-macrophage interaction. Memorias do Instituto Oswaldo Cruz, 84, 441–462. CrossrefGoogle Scholar

  • [9] Avila J.L. 1992. Molecular mimicry between Trypanosoma cruzi and host nervous tissues. Acta Científica Venezolana, 43, 330–340. Google Scholar

  • [10] Barcinski M.A., DosReis G.A. 1999. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases. Brazilian Journal of Biological Research, 32, 395–401. Google Scholar

  • [11] Barnabe C., Neubauer K., Solari A., Tibayrenc M. 2001. Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Tropica, 78, 127–137. http://dx.doi.org/10.1016/S0001-706X(00)00183-2CrossrefGoogle Scholar

  • [12] Benvenuti L.A., Aiello V.D., Palomino S.A., Higuchi M.L. 2003. Ventricular expression of atrial natriuretic peptide in chronic chagasic cardiomyopathy is not induced by myocarditis. International Journal of Cardiology, 88, 57–61. http://dx.doi.org/10.1016/S0167-5273(02)00363-7CrossrefGoogle Scholar

  • [13] Bestetti R.B., Coutinho-Neto J., Staibano L., Pinto L.Z., Muccillo G., Oliveira J.S. 1995. Peripheral and coronary sinus catecholamine levels in patients with severe congestive heart failure due to Chagas’ disease. Cardiology, 86, 202–206. CrossrefGoogle Scholar

  • [14] Bijovsky A.T., Milder R.V., Abrahamson I.A., Sinhorini I.L., Mariano M. 1984. The influence of lymphatic drainage in experimental Trypanosoma cruzi infection. Acta Tropica, 41, 207–214. Google Scholar

  • [15] Bogliolo A.R., Lauria-Pires L., Gibson W.C. 1996. Polymorphisms in Trypanosoma cruzi: Evidence of genetic recombination. Acta Tropica, 61, 31–40. http://dx.doi.org/10.1016/0001-706X(95)00138-5CrossrefGoogle Scholar

  • [16] Brener Z., Andrade Z.A. 1979. Trypanosoma cruzi e Doença de Chagas. Guanabara Koogan, Rio de Janeiro. Google Scholar

  • [17] Brener Z., Gazzinelli R.T. 1997. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. International Archives of Allergy and Immunology, 114. Google Scholar

  • [18] Bruggink A.H., Jonge N. de, Oosterhout M.F. van, Wichen D.F. van, Koning E. de, Lahpor J.R., Kemperman H., Gmelig-Meyling F.H., Weger R.A. de 2006. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. Journal of Heart and Lung Transplantation, 25, 174–180. http://dx.doi.org/10.1016/j.healun.2005.09.007CrossrefGoogle Scholar

  • [19] Buscaglia C.A., Di Noia J.M. 2003. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes and Infection, 5, 419–427. http://dx.doi.org/10.1016/S1286-4579(03)00050-9CrossrefGoogle Scholar

  • [20] Caeiro T.F., Palmero H.A., Iosa D. 1980. Baroreceptor reflex in Chagas disease. Medicina (Buenos Aires), 40,Suppl. 1, 27–32. Google Scholar

  • [21] Cardarelli R., Lumicao T.C. Jr. 2003. B-type natriuretic peptide: a review of its diagnostic, prognostic, and therapeutic monitoring value in heart failure for primary care physicians. Journal of the American Board of Family Practice, 16, 327–333. CrossrefGoogle Scholar

  • [22] Campbell D.A., Westenberger S.J., Sturm N.R. 2004. The determinants of Chagas disease: connecting the parasite and host genetics. Current Molecular Medicine, 4, 549–562. http://dx.doi.org/10.2174/1566524043360249CrossrefGoogle Scholar

  • [23] Carrasco Guerra H.A., Palacios-Pru E., Dagert de Scorza C., Molina C., Inglessis G., Mendoza R.V. 1987. Clinical, histochemical, and ultrastructural correlation in septal endomyocardial biopsies from chronic chagasic patients: detection of early myocardial damage. American Heart Journal, 113, 716–724. http://dx.doi.org/10.1016/0002-8703(87)90712-5CrossrefGoogle Scholar

  • [24] Carrasco H.J., Frame I.A., Valente S.A., Miles M.A. 1996. Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene, 54, 418–424. Google Scholar

  • [25] Castagnino H.E., Jorg M.E., Thompson A.C. 1982. Ventricular aneurysms in chronic Chagas’ cardiopathy. Journal of Cardiovascular Surgery (Torino), 23, 28–33. Google Scholar

  • [26] Chagas C. 1909. Nova trypanosomíase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade morbida do homem. Memorias do Instituto Oswaldo Cruz, 1, 159–218. CrossrefGoogle Scholar

  • [27] Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: central role of complex III. Journal of Biological Chemistry, 278, 36027–36031. http://dx.doi.org/10.1074/jbc.M304854200CrossrefGoogle Scholar

  • [28] Cohn J.N., Ferrari R., Sharpe N. 2000. Cardiac remodeling — concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. Journal of the American College of Cardiology, 35, 569–582. http://dx.doi.org/10.1016/S0735-1097(99)00630-0CrossrefGoogle Scholar

  • [29] Coronado X., Zulantay I., Albrecht H., Rozas M., Apt W., Ortiz S., Rodriguez J., Sanchez G., Solari A. 2006. Variation in Trypanosoma cruzi clonal composition detected in blood patients and xenodiagnosis triatomines: implications in the molecular epidemiology of Chile. American Journal of Tropical Medicine and Hygiene, 74, 1008–1012. Google Scholar

  • [30] Cunha-Neto E., Rizzo L.V., Albuquerque F., Abel L., Guilherme L., Bocchi E., Bacal F., Carrara D., Ianni B., Mady C., Kalil J. 1998. Cytokine production profile of heart-infiltrating T cells in Chagas’ disease cardiomyopathy. Brazilian Journal of Medical and Biological Research, 31, 133–137. http://dx.doi.org/10.1590/S0100-879X1998000100018CrossrefGoogle Scholar

  • [31] D’Angelo-Mendoza E., Rodrigues-Bonfante C., Camacho I., Martinez J., Perdomo T., Cabrera A., Bonfante-Cabarcas R. 2005. Patients suffering dilated chagasic cardiopathy or non chagasic cardiopathy show an increased levels of tumor necrosis factor alpha. Investigación Clínica, 46, 229–240. Google Scholar

  • [32] Davila D.F., Angel F., Arata de Bellabarba G., Donis J.H. 2002. Effects of metoprolol in chagasic patients with severe congestive heart failure. International Journal of Cardiology, 85, 255–260. http://dx.doi.org/10.1016/S0167-5273(02)00181-XCrossrefGoogle Scholar

  • [33] Davila D.F., Donis J.H., Torres A., Ferrer J.A. 2004. A modified and unifying neurogenic hypothesis can explain the natural history of chronic Chagas heart disease. International Journal of Cardiology, 96, 191–195. http://dx.doi.org/10.1016/j.ijcard.2003.06.015CrossrefGoogle Scholar

  • [34] Davila D.F., Inglessis G., Mazei de Davila C.A. 1998. Chagas’ disease and the autonomic nervous system. International Journal of Cardiology, 66, 123–127. http://dx.doi.org/10.1016/S0167-5273(98)00212-5CrossrefGoogle Scholar

  • [35] Davila D.F., Rossell R.O., Donis J.H. 1989. Cardiac parasympathetic abnormalities: Cause or consequence of Chagas heart disease. Parasitology Today, 5, 327–329. http://dx.doi.org/10.1016/0169-4758(89)90127-0CrossrefGoogle Scholar

  • [36] Devera R., Fernandes O., Coura J.R. 2003. Should Trypanosoma cruzi be called “cruzi” complex? a review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection. Memorias do Instituto Oswaldo Cruz, 98,Suppl. 1, 1–12. CrossrefGoogle Scholar

  • [37] Dhalla N.S., Temsah R.M., Netticadan T. 2000. Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 18, 655–673. http://dx.doi.org/10.1097/00004872-200018060-00002CrossrefGoogle Scholar

  • [38] DosReis G.A., Fonseca M.E.F., Lopes M.F. 1995. Programmed T-cell death in experimental Chagas disease. Parasitology Today, 11, 390–394. http://dx.doi.org/10.1016/0169-4758(95)80011-5CrossrefGoogle Scholar

  • [39] DosReis G.A., Barcinski M.A. 2001. Apoptosis and parasitism: from the parasite to the host immune response. Advances in Parasitology, 49, 133–161. CrossrefGoogle Scholar

  • [40] Eisen H., Kahn S. 1991. Mimicry in Trypanosoma cruzi — fantasy and reality. Current Opinion in Immunology, 3, 507–510. http://dx.doi.org/10.1016/0952-7915(91)90012-PCrossrefGoogle Scholar

  • [41] Elizari M.V. 1999. Chagasic myocardiopathy: historical perspective. Medicina (Buenos Aires), 59,Suppl. 2, 25–40. Google Scholar

  • [42] Elizari M.V. 2002. Arrhythmias associated with Chagas’ heart disease. Cardiac Electrophysiology Review, 6, 115–119. http://dx.doi.org/10.1023/A:1017911911178CrossrefGoogle Scholar

  • [43] Factor S.M., Cho S., Wittner M., Tanowitz H. 1985. Abnormalities of the coronary microcirculation in acute murine Chagas’ disease. American Journal of Tropical Medicine and Hygiene, 34, 246–252. Google Scholar

  • [44] Factor S.M., Minase T., Bhan R., Wolinsky H., Sonnenblick E.H. 1983. Hypertensive diabetic cardiomyopathy in the rat: ultrastructural features. Virchows Archiv. A, Pathological Anatomy and Histopathology, 398, 305–317. http://dx.doi.org/10.1007/BF00583587CrossrefGoogle Scholar

  • [45] Fernandes O., Souto R.P., Castro J.A., Pereira J.B., Fernandes N.C., Junqueira A.C., Naiff R.D., Barrett T.V., Degrave W., Zingales B., Campbell D.A., Coura J.R. 1998. Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. American Journal of Tropical Medicine and Hygiene, 58, 807–811. Google Scholar

  • [46] Fernandez A., Hontebeyrie M., Said G. 1992. Autonomic neuropathy and immunological abnormalities in Chagas’ disease. Clinical Autonomic Research, 2, 409–412. http://dx.doi.org/10.1007/BF01831400CrossrefGoogle Scholar

  • [47] Fuenmayor C., Higuchi M.L., Carrasco H., Parada H., Gutierrez P., Aiello V., Palomino S. 2005. Acute Chagas’ disease: immunohistochemical characteristics of T cell infiltrate and its relationship with T. cruzi parasitic antigens. Acta Cardiologica, 60, 33–37. http://dx.doi.org/10.2143/AC.60.1.2005046CrossrefGoogle Scholar

  • [48] Furumoto T., Fujii S., Mikami T., Inoue M., Nishihara K., Kaga S., Imagawa S., Goto K., Komuro K., Yamada S., Onozuka H., Kitabatake A., Sobel B.E. 2006. Increased plasma concentrations of N-terminal pro-brain natriuretic peptide reflect the presence of mildly reduced left ventricular diastolic function in hypertension. Coronary Artery Disease, 17, 45–50. http://dx.doi.org/10.1097/00019501-200602000-00008CrossrefGoogle Scholar

  • [49] Gaunt M.W., Yeo M., Frame I.A., Stothard J.R., Carrasco H.J., Taylor M.C., Mena S.S., Veazey P., Miles G.A., Acosta N., Arias A.R. de, Miles M.A. 2003. Mechanism of genetic exchange in American trypanosomes. Nature, 421, 936–939. http://dx.doi.org/10.1038/nature01438CrossrefGoogle Scholar

  • [50] Gavin J.B., Maxwell L., Edgar S.G. 1998. Microvascular involvement in cardiac pathology. Journal of Molecular and Cellular Cardiology, 30, 2531–2540. http://dx.doi.org/10.1006/jmcc.1998.0824CrossrefGoogle Scholar

  • [51] Gironés N., Cuervo H., Fresno M. 2005. Trypanosoma cruzi-induced molecular mimicry and Chagas’ disease. Current Topics in Microbiology and Immunology, 296, 89–123. http://dx.doi.org/10.1007/3-540-30791-5_6CrossrefGoogle Scholar

  • [52] Gironés N., Fresno M. 2003. Etiology of Chagas disease myocarditis: autoimmunity, parasite persistence, or both? Trends in Parasitology, 19, 19–22. http://dx.doi.org/10.1016/S1471-4922(02)00006-5CrossrefGoogle Scholar

  • [53] Guevara A.G., Eras J.W., Recalde M., Vinueza L., Cooper V.J., Ouaissi A., Guderian R.H. 1997. Severe digestive pathology associated with chronic Chagas’ disease in Ecuador: report of two cases. Revista da Sociedad Brasileira de Medicina Tropical, 30, 389–392. Google Scholar

  • [54] Hardison J.L., Wrightsman R.A., Carpenter P.M., Lane T.E., Manning J.E. 2006a. The chemokines CXCL9 and CXCL10 promote a protective immune response but do not contribute to cardiac inflammation following infection with Trypanosoma cruzi. Infection and Immunity, 74, 125–134. http://dx.doi.org/10.1128/IAI.74.1.125-134.2006Google Scholar

  • [55] Hardison J.L., Wrightsman R.A., Carpenter P.M., Kuziel W.A., Lane T.E., Manning J.E. 2006b. The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi. Infection and Immunity, 74, 135–143. http://dx.doi.org/10.1128/IAI.74.1.135-143.2006CrossrefGoogle Scholar

  • [56] Higuchi M. 1995. Endomyocardial biopsy in Chagas’ heart disease. São Paulo Medical Journal, 113, 821–825. Google Scholar

  • [57] Higuchi M.L., Benvenuti L.A., Reis M.M., Metzger M. 2003. Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovascular Research, 60, 96–107. http://dx.doi.org/10.1016/S0008-6363(03)00361-4CrossrefGoogle Scholar

  • [58] Ide T., Tsutsui H., Kinugawa S., Utsumi H., Kang D., Hattori N., Uchida K., Arimura K., Egashira K., Takeshita A. 1999. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circulation Research, 85, 357–363. CrossrefGoogle Scholar

  • [59] Jelicks L.A., Chandra M., Shirani J., Shtutin V., Tang B., Christ G.J., Factor S.M., Wittner M., Huang H., Weiss L.M., Mukherjee S., Bouzahzah B., Petkova S.B., Teixeira M.M., Douglas S.A., Loredo M.L., D’Orleans-Juste P., Tanowitz H.B. 2003. Cardioprotective effects of phosphoramidon on myocardial structure and function in murine Chagas’ disease. International Journal for Parasitology, 33, 217. http://dx.doi.org/10.1016/S0020-7519(03)00015-8CrossrefGoogle Scholar

  • [60] Junqueira L.F.Jr., Gallo L.Jr., Manco J.C., Marin-Neto J.A., Amorim D.S. 1985. Subtle cardiac autonomic impairment in Chagas’ disease detected by baroreflex sensitivity testing. Brazilian Journal of Biological Research, 18, 171–178. Google Scholar

  • [61] Junqueira L.F., Soares J.D. 2002. Impaired autonomic control of heart interval changes to Valsalva manoeuvre in Chagas’ disease without overt manifestation. Autonomic Neuroscience, 97, 59–67. http://dx.doi.org/10.1016/S1566-0702(02)00014-0CrossrefGoogle Scholar

  • [62] Kalil J., Cunha-Neto E. 1996. Autoimmunity in Chagas disease cardiomyopathy: Fulfilling the criteria at last? Parasitology Today, 12, 396–399. http://dx.doi.org/10.1016/0169-4758(96)10058-2CrossrefGoogle Scholar

  • [63] Kedziersky R.M., Yanagisawa M. 2001. Endothelin system: the double-edged sword in health and disease. Annual Review of Pharmacology and Toxicology, 41, 851–876. http://dx.doi.org/10.1146/annurev.pharmtox.41.1.851CrossrefGoogle Scholar

  • [64] Kierszenbaum F. 1986. Autoimmunity in Chagas’ disease. Journal of Parasitology, 72, 201–211. http://dx.doi.org/10.2307/3281592CrossrefGoogle Scholar

  • [65] Kierszenbaum F. 1999. Chagas’ disease the autoimmunity hypothesis. Clinical Microbiology Reviews, 12, 210–223. Google Scholar

  • [66] Kierszenbaum F. 2003. Views on the autoimmunity hypothesis for Chagas disease pathogenesis. FEMS Immunology and Medical Microbiology, 37, 1–11. http://dx.doi.org/10.1016/S0928-8244(03)00097-XCrossrefGoogle Scholar

  • [67] Kierszenbaum F. 2005. Where do we stand on the autoimmunity hypothesis of Chagas disease? Trends in Parasitology, 21, 513–516. http://dx.doi.org/10.1016/j.pt.2005.08.013CrossrefGoogle Scholar

  • [68] Kierszenbaum F., Ackerman S.J., Gleich G.J. 1981. Destruction of bloodstream forms of Trypanosoma cruzi by eosinophil granule major basic protein. American Journal of Tropical Medicine and Hygiene, 30, 775–779. Google Scholar

  • [69] Kierszenbaum F., Knecht E., Budzko D.B., Pizzimenti M.C. 1974. Phagocytosis: a defense mechanism against infection with Trypanosoma cruzi. Journal of Immunology, 112, 1839–1844. Google Scholar

  • [70] Kierszenbaum F., Villalta F., Tai P.-C. 1986. Role of inflammatory cells in Chagas’ disease. III. Kinetics of human eosinophil activation upon interaction with parasites Trypanosoma cruzi. Journal of Immunology, 136, 662–666. Google Scholar

  • [71] Kirchhoff L.V., Weiss L.M., Wittner M., Tanowitz H.B. 2004. Parasitic diseases of the heart. Frontiers in Bioscience, 9, 706–723. http://dx.doi.org/10.2741/1255CrossrefGoogle Scholar

  • [72] Kiss D.R., Habr-Gama A., Pinotti H.W. 1986. Chagas’ megacolon: considerations on new physiopathological perspectives. Revista Paulista de Medicina, 104, 145–155. Google Scholar

  • [73] Klessig D.F., Chow L.T. 1980. Incomplete splicing and deficient accumulation of fiber messenger RNA on monkey cells infected by human adenovirus type 2. Journal of Molecular Biology, 139, 221–242. http://dx.doi.org/10.1016/0022-2836(80)90306-XGoogle Scholar

  • [74] Köberle F. 1958. Cardiopatia Chagásica. Hospital (Rio de Janeiro), 53, 311–346. Google Scholar

  • [75] Köberle F. 1961. Pathology and pathological anatomy of Chagas’ disease. Boletín de la Oficina Sanitaria Panamericana, 51, 404–428. Google Scholar

  • [76] Köberle F. 1974. Pathogenesis of Chagas’ disease. Ciba Foundation Symposium, 20, 137–152. Google Scholar

  • [77] Kuhn R.E. 1994. Macrophages in experimental Chagas’ disease. Immunology Series, 60, 495–502. Google Scholar

  • [78] Leguizamon M.S., Mocetti E., García-Rivello H., Argibay P., Campetella O. 1999. Trans-sialidase from Trypanosoma cruzi induces apoptosis in cells from the immune system in vivo. Journal of Infectious Diseases, 180, 1398–1402. http://dx.doi.org/10.1086/315001CrossrefGoogle Scholar

  • [79] Leon W., Engman D.M. 2001. Autoimmunity in Chagas heart disease. International Journal for Parasitology, 31, 555–561. http://dx.doi.org/10.1016/S0020-7519(01)00163-1CrossrefGoogle Scholar

  • [80] Leon J.S., Engman D.M. 2002. The contribution of autoimmunity to Chagas heart disease. In: World class parasites: American trypanosomiasis (Eds. K.M. Tyler and M.A. Miles). Kluwer Academic Publishers, New York, 97–106. Google Scholar

  • [81] Lopes A.F., DosReis G.A. 2000. Experimental Chagas disease: phagocytosis of apoptotic lymphocytes deactivates macrophages and fuels parasite growth. Apoptosis, 5, 221–224. http://dx.doi.org/10.1023/A:1009648311490CrossrefGoogle Scholar

  • [82] Macedo A.M., Machado C.R., Oliveira R.P., Pena S.D.J. 2004. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Memorias do Instituto Oswaldo Cruz, 99,Suppl. 1, 1–12. Google Scholar

  • [83] Macedo V. 1999. Indeterminate form of Chagas disease. Memorias do Instituto Oswaldo Cruz, 94,Suppl. 1, 311–316. CrossrefGoogle Scholar

  • [84] Machado F.S., Koyama N.S., Carregaro V., Ferreira B.R., Milanezi C.M., Teixeira M.M., Rossi M.A., Silva J.S. 2005. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. Journal of Infectious Diseases, 191, 627–636. http://dx.doi.org/10.1086/427515CrossrefGoogle Scholar

  • [85] Machado F.S., Martins G.A., Aliberti J.C.S., Mestriner F.L.A.C., Cunha F.Q., Silva J.S. 2000. Trypanosoma cruzi — infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide — dependent trypanocidal activity. Circulation, 102, 3003–3008. CrossrefGoogle Scholar

  • [86] Maeda K., Tsutamoto T., Wada A., Hisanaga T., Kinoshita M. 1998. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. American Heart Journal, 135, 825–832. http://dx.doi.org/10.1016/S0002-8703(98)70041-9CrossrefGoogle Scholar

  • [87] Marin-Neto J.A., Marzullo P., Marcassa C., Gallo L.Jr., Maciel B.C., Bellina C.R., L’Abbate A. 1992. Myocardial perfusion abnormalities in chronic Chagas’ disease as detected by Thallium-201 scintigraphy. American Journal of Cardiology, 69, 780–784. http://dx.doi.org/10.1016/0002-9149(92)90505-SCrossrefGoogle Scholar

  • [88] Marin-Neto J.A., Simoes M.V., Ayres-Neto E.M., Attab-Santos J.L., Gallo L.Jr., Amorim D.S., Maciel B.C. 1995. Studies of the coronary circulation in Chagas’ heart disease. Revista Paulista de Medicina, 113, 826–834. Google Scholar

  • [89] McDaniel J.P., Dvorak J.A. 1993. Identification, isolation, and characterization of naturally-occurring Trypanosoma cruzi variants. Molecular and Biochemical Parasitology, 57, 213–222. http://dx.doi.org/10.1016/0166-6851(93)90197-6CrossrefGoogle Scholar

  • [90] Mengel J.O., Rossi M.A. 1992. Chronic chagasic myocarditis pathogenesis: dependence on autoimmune and microvascular factors. American Heart Journal, 124, 1052–1057. http://dx.doi.org/10.1016/0002-8703(92)90991-4CrossrefGoogle Scholar

  • [91] Molina H.A., Kierszenbaum F. 1987. A study of human myocardial tissue in Chagas’ disease: distribution and frequency of inflammatory cell types. International Journal for Parasitology, 17, 1297–1305. http://dx.doi.org/10.1016/0020-7519(87)90095-6CrossrefGoogle Scholar

  • [92] Molina H.A., Kierszenbaum F. 1988a. Immunohistochemical detection of deposits of eosinophil-derived neurotoxin and eosinophil peroxidase in the myocardium of patients with Chagas’ disease. Immunology, 64, 725–731. Google Scholar

  • [93] Molina H.A., Kierszenbaum F. 1988b. Kinetics of development of inflammatory lesions in myocardial and skeletal muscle in experimental Trypanosoma cruzi infection. Journal of Parasitology, 74, 370–374. http://dx.doi.org/10.2307/3282040CrossrefGoogle Scholar

  • [94] Molina H.A., Kierszenbaum F. 1989a. Eosinophil activation in acute and chronic chagasic myocardial lesions and deposition of toxic eosinophil granule proteins on heart myofibers. Journal of Parasitology, 75, 129–133. http://dx.doi.org/10.2307/3282950CrossrefGoogle Scholar

  • [95] Molina H.A., Kierszenbaum F. 1989b. Interaction of human eosinophils or neutrophils with Trypanosoma cruzi in vitro caused bystander cardiac cell damage. Immunology, 66, 289–295. Google Scholar

  • [96] Molina H.A., Kierszenbaum F., Hamann K.J., Gleich G.J. 1988. Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene, 38, 327–334. Google Scholar

  • [97] Morris S.A., Tanowitz H.B., Makman M. 1992. Trypanosoma cruzi: alteration of cAMP metabolism following infection of human endothelial cells. Experimental Parasitology, 74, 69–76. http://dx.doi.org/10.1016/0014-4894(92)90140-6CrossrefGoogle Scholar

  • [98] Morris S.A., Bilezikian J.P., Hatcher V., Weiss L.M., Tanowitz H.B., Wittner M. 1989. Trypanosoma cruzi: Infection of cultured human endothelial cells alters inositol phosphate synthesis. Experimental Parasitology, 69, 330–339. http://dx.doi.org/10.1016/0014-4894(89)90082-9CrossrefGoogle Scholar

  • [99] Morris S.A., Tanowitz H., Hatcher V., Bilezikian J.P., Wittner M. 1988. Alterations in intracellular calcium following infection of human endothelial cells with Trypanosoma cruzi. Molecular and Biochemical Parasitology, 29, 213–221. http://dx.doi.org/10.1016/0166-6851(88)90076-XCrossrefGoogle Scholar

  • [100] Morris S.A., Tanowitz H.B., Wittner M., Bilezikian J.P. 1990. Pathophysiological insights into the cardiomyopathy of Chagas’ disease. Circulation, 82, 1900–1909. CrossrefGoogle Scholar

  • [101] Mucci J., Hidalgo A., Mocetti E., Argibay P.F., Leguizamon M.S., Campetella O. 2002. Thymocyte depletion in Trypanosoma cruzi infection is mediated by trans-sialidase-induced apoptosis on nurse cells complex. Proceedings of the National Academy of Sciences, USA, 99, 3896–3901. http://dx.doi.org/10.1073/pnas.052496399CrossrefGoogle Scholar

  • [102] Nabors G.S., Tarleton R.L. 1991. Differential control of IFN-gamma and IL-2 production during Trypanosoma cruzi infection. Journal of Immunology, 146, 3591–3598. Google Scholar

  • [103] Odreman R.O., Davila D.F., Donis J.H., Torres A., Ferrer J., Inglessis I. 2004. Valsalva maneuver in chagasic patients with documented past medical history of acute chagasic myocarditis. International Journal of Cardiology, 93, 163–167. http://dx.doi.org/10.1016/S0167-5273(03)00197-9CrossrefGoogle Scholar

  • [104] Oliveira J.S.M. 1985. A natural human model of intrinsic heart nervous system denervation: Chagas’ cardiopathy. American Heart Journal, 110, 1092–1098. http://dx.doi.org/10.1016/0002-8703(85)90222-4CrossrefGoogle Scholar

  • [105] Oliveira J.S.M., Monteiro dos Santos J.C., Muccillo G., Ferreira A.L. 1985. Increased capacity of the coronary arteries in chronic Chagas’ heart disease: further support for the neurogenic pathogenesis concept. American Heart Journal, 109, 304–308. http://dx.doi.org/10.1016/0002-8703(85)90598-8CrossrefGoogle Scholar

  • [106] Oliveira-Marques D.S. de, Bonametti A.S., Matsuo T., Gregori Junior F. 2005. The epidemiologic profile and prevalence of cardiopathy in Trypanosoma cruzi infected blood donor candidates, Londrina, Parana, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 47, 321–326. Google Scholar

  • [107] Oliveira R.P., Chiari E., Pena S.D., Macedo A.M. 1997. An alternative approach to evaluating the intraspecific genetic variability of parasites. Parasitology Today, 13, 196–200. http://dx.doi.org/10.1016/S0169-4758(97)01044-2CrossrefGoogle Scholar

  • [108] Parada H., Carrasco H.A., Anez N., Fuenmayor C., Inglessis I. 1997. Cardiac involvement is a constant finding in acute Chagas’ disease: a clinical, parasitological and histopathological study. International Journal of Cardiology, 60, 49–54. http://dx.doi.org/10.1016/S0167-5273(97)02952-5CrossrefGoogle Scholar

  • [109] Perlowagora-Szumlewicz A., Muller C.A., Moreira C.J. 1990. Studies in search of a suitable experimental insect model for xenodiagnosis of hosts with Chagas’ disease. 4. The reflection of parasite stock in the responsiveness of different vector species to chronic infection with different Trypanosoma cruzi stocks. Revista de Saúde Pública, 24, 165–177. Google Scholar

  • [110] Petkova S.B., Huang H., Factor S.M., Pestell R.G., Bouzahzah B., Jelicks L.A., Weiss L.M., Douglas S.A., Wittner M., Tanowitz H.B. 2001. The role of endothelin in the pathogenesis of Chagas’ disease. International Journal for Parasitology, 31, 499–511. http://dx.doi.org/10.1016/S0020-7519(01)00168-0CrossrefGoogle Scholar

  • [111] Piazza L.A., Bold A.J. de, Santamarina N., Hliba E., Rubiolo E.R. 1994. Atrial natriuretic factor in experimental acute Chagas’ disease. Parasitology Research, 80, 78–80. http://dx.doi.org/10.1007/BF00932629CrossrefGoogle Scholar

  • [112] Pinto Dias J.C. 1979. Mecanismos de transmissão. In: Trypanosoma cruzi e Doença de Chagas (Eds. Z. Brener and Z.A. Andrade). Guanabara Koogan, Rio de Janeiro, 152–174. Google Scholar

  • [113] Pompilio M.A., Dorval M.E., Cunha R.V., Britto C., Borges-Pereira J. 2005. Epidemiological, clinical and parasitological aspects of Chagas’ disease in Mato Grosso do Sul State. Revista da Sociedade Brasileira de Medicina Tropical, 38, 473–478. http://dx.doi.org/10.1590/S0037-86822005000600005CrossrefGoogle Scholar

  • [114] Ramos S.G., Rossi M.A. 1999. Microcirculation and Chagas’ disease: hypothesis and recent results. Revista do Instituto de Medicina Tropical de São Paulo, 41, 123–129. Google Scholar

  • [115] Rassi A. 1979. Clinica: fase aguda. In: Trypanosoma cruzi e Doença de Chagas (Eds. Z. Brener and Z.A. Andrade). Guanabara Koogan, Rio de Janeiro, 249–264. Google Scholar

  • [116] Rassi A.Jr., Rassi A., Little W.C. 2000. Chagas’ heart disease. Clinical Cardiology, 23, 883–889. http://dx.doi.org/10.1002/clc.4960231205CrossrefGoogle Scholar

  • [117] Reed S.G. 1988. In vivo administration of recombinant IFN-γ induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. Journal of Immunology, 140, 4342–4347. Google Scholar

  • [118] Rezende J.M. de 1979. Clínica: Manifestaçoes digestivas. In: Trypanosoma cruzi e Doença de Chagas (Eds. Z. Brener and Z.A. Andrade). Guanabara Koogan, Rio de Janeiro, 312–361. Google Scholar

  • [119] Ribeiro A.L., DosReis A.M., Barros M.V., Souza M.R. de, Rocha A.L., Perez A.A., Pereira J.B., Machado F.S., Rocha M.O. 2002. Brain natriuretic peptide and left ventricular dysfunction in Chagas’ disease. Lancet, 360, 461–462. http://dx.doi.org/10.1016/S0140-6736(02)09638-1CrossrefGoogle Scholar

  • [120] Rocha M.O., Ribeiro A.L., Teixeira M.M. 2003. Clinical management of chronic Chagas cardiomyopathy. Frontiers in Bioscience, 8, e44–e54. http://dx.doi.org/10.2741/926CrossrefGoogle Scholar

  • [121] Romaña C. 1963. Enfermedad de Chagas. Lopez Libreros Editores, Buenos Aires. Google Scholar

  • [122] Rossi M.A. 1990. Microvascular changes as a cause of chronic cardiomyopathy in Chagas’ disease. American Heart Journal, 120, 233–236. http://dx.doi.org/10.1016/0002-8703(90)90191-YCrossrefGoogle Scholar

  • [123] Rossi M.A. 1997. Aortic endothelial cell changes in the acute septicemic phase of experimental Trypanosoma cruzi infection in rats: scanning and transmission electron microscopy study. American Journal of Tropical Medicine and Hygiene, 57, 321–327. Google Scholar

  • [124] Rossi M.A., Gonçalves S., Ribeiro-dos-Santos R. 1984. Experimental Trypanosoma cruzi cardiomyopathy in BALB/c mice. The potential role of intravascular platelet aggregation in its genesis. American Journal of Pathology, 114, 209–216. Google Scholar

  • [125] Rossi M.A., Ramos S.G., Bestetti R.B. 1996. Coronary microvascular abnormalities in Chagas’ disease. American Heart Journal, 132, 207–210. http://dx.doi.org/10.1016/S0002-8703(96)90417-2CrossrefGoogle Scholar

  • [126] Rossi M.A., Souza A.C. 1999. Is apoptosis a mechanism of cell death of cardiomyocytes in chronic chagasic myocarditis? International Journal of Cardiology, 68, 325–331. http://dx.doi.org/10.1016/S0167-5273(98)00375-1CrossrefGoogle Scholar

  • [127] Russo N., Starobinas N. 1991. Macrophage activation and resistance to Trypanosoma cruzi infection. Research in Immunology, 142, 144–146. http://dx.doi.org/10.1016/0923-2494(91)90026-FCrossrefGoogle Scholar

  • [128] Sawyer D.B., Siwik D.A., Xiao L., Pimentel D.R., Singh K., Colucci W.S. 2002. Role of oxidative stress in myocardial hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 34, 379–388. http://dx.doi.org/10.1006/jmcc.2002.1526CrossrefGoogle Scholar

  • [129] Silva J.S., Machado F.S., Martins G.A. 2003. The role of nitric oxide in the pathogenesis of Chagas disease. Frontiers in Bioscience, 8, e314–e325. http://dx.doi.org/10.2741/1012CrossrefGoogle Scholar

  • [130] Silva J.S., Morrissey P.J., Grabstein K.H., Mohler K.M., Anderson D., Reed S.G. 1992. Interleukin-10 and interferon-gamma regulation of experimental Trypanosoma cruzi infection. Journal of Experimental Medicine, 175, 169–174. http://dx.doi.org/10.1084/jem.175.1.169CrossrefGoogle Scholar

  • [131] Silva J.S., Vespa G.N.R., Cardoso M.A.G., Aliberti J.C.S., Cunha F.Q. 1995. Tumor necrosis factor alpha mediates resistance to Typanosoma cruzi infection in mice by inducing nitric oxide production in infected gamma interferon-activated macrophages. Infection and Immunity, 63, 4862–4867. Google Scholar

  • [132] Soares M.B., Pontes-de-Carvalho L., Ribeiro-dos-Santos R. 2001. The pathogenesis of Chagas’ disease: when autoimmune and parasite-specific immune responses meet. Anais da Academia Brasileira de Ciências, 73, 547–559. Google Scholar

  • [133] Solari A., Wallace A., Oritz S., Venegas J., Sanchez G. 2006. Biological characterization of Trypanosoma cruzi stocks from Chilean insect vectors. Experimental Parasitology, 89, 312–322. http://dx.doi.org/10.1006/expr.1998.4289CrossrefGoogle Scholar

  • [134] Souto R.P., Fernandes O., Macedo A.M., Campbell D.A., Zingales B. 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 83, 141–152. http://dx.doi.org/10.1016/S0166-6851(96)02755-7CrossrefGoogle Scholar

  • [135] Souza E.M. de, Araujo Jorge T.C., Bailly C., Lansiaux A., Batista M.M., Oliveira G.M., Soeiro M.N. 2003. Host and parasite apoptosis following Trypanosoma cruzi infection in vitro and in vivo models. Cell and Tissue Research, 314, 223–235. http://dx.doi.org/10.1007/s00441-003-0782-5CrossrefGoogle Scholar

  • [136] Souza M.M de., Andrade S.G., Barbosa A.A.Jr., Macedo Santos R.T., Ferreira Alves V.A., Andrade Z.A. 1996. Trypanosoma cruzi strains and autonomic nervous system pathology in experimental Chagas disease. Memorias do Instituto Oswaldo Cruz, 91, 217–224. CrossrefGoogle Scholar

  • [137] Storino R., Auger S., Caravello O., Urrutia M.I., Sanmartino M., Jorg M. 2002. Chagasic cardiopathy in endemic area versus sporadically infected patients. Revista da Saúde Pública, 36, 755–758 (In Spanish). CrossrefGoogle Scholar

  • [138] Storino R., Milei J. 1986. Miocardiopatia Chagasica Cronica. Un Enfoque para el Clinico General. Club de Estudio, Buenos Aires. Google Scholar

  • [139] Stothard J., Frame I., Miles M. 1999. Genetic diversity and genetic exchange in Trypanosoma cruzi: dual drug-resistant “progeny” from episomal transformants. Memorias do Instituto Oswaldo Cruz, 94,Suppl. 1, 189–193. CrossrefGoogle Scholar

  • [140] Talvani A., Ribeiro C.S., Aliberti J.C., Michailowsky V., Santos P.V., Murta S.M., Romanha A.J., Almeida I.C., Farber J., Lannes-Vieira J., Silva J.S., Gazzinelli R.T. 2000. Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-gamma as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi. Microbes and Infection, 2, 851–866. http://dx.doi.org/10.1016/S1286-4579(00)00388-9CrossrefGoogle Scholar

  • [141] Talvani A., Rocha M.O., Barcelos M.S., Gomes Y.M., Ribeiro A.L., Teixeira M.M. 2004. Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clinical Infectious Diseases, 38, 943–950. http://dx.doi.org/10.1086/381892Google Scholar

  • [142] Tanowitz H.B., Huang H., Jelicks L.A., Chra M., Loredo M.L., Weiss L.M., Factor S.M., Shtutin V., Mukherjee S., Kitsis R.N., Christ G.J., Wittner M., Shirani J., Kisanuki Y.Y., Yanagisawa M. 2005. Role of endothelin 1 in the pathogenesis of chronic chagasic heart disease. Infection and Immunity, 73, 2496–2503. http://dx.doi.org/10.1128/IAI.73.4.2496-2503.2005CrossrefGoogle Scholar

  • [143] Tanowitz H.B., Kaul D.K., Chen B., Morris S.A., Factor S.M., Weiss L.M., Wittner M. 1996. Compromised microcirculation in acute murine Trypanosoma cruzi infection. Journal of Parasitology, 82, 124–130. http://dx.doi.org/10.2307/3284127CrossrefGoogle Scholar

  • [144] Tanowitz H.B., Wittner M., Morris S.A., Zhao W., Weiss L.M., Hatcher V.B., Braunstein V.L., Huang H., Douglas S.A., Valcic M., Spektor M., Christ G.J. 1999. The putative mechanistic basis for the modulatory role of endothelin-1 in the altered vascular tone induced by Trypanosoma cruzi. Endothelium, 6, 217–230. Google Scholar

  • [145] Tarleton R.L. 1991. The role of T-cell subpopulations in experimental Chagas’ disease. Research in Immunology, 142, 125–181. http://dx.doi.org/10.1016/0923-2494(91)90022-BCrossrefGoogle Scholar

  • [146] Tarleton R.L. 1995. The role of T cells in Trypanosoma cruzi infections. Parasitology Today, 11, 7–9. http://dx.doi.org/10.1016/0169-4758(95)80095-6CrossrefGoogle Scholar

  • [147] Tibayrenc M. 2003. Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution. Kinetoplastid Biology and Disease, 2, 12. http://dx.doi.org/10.1186/1475-9292-2-12CrossrefGoogle Scholar

  • [148] Torres S.H., Finol H.J., Montes de Oca M., Vasquez T., Puigbo J.J., Loyo J.G. 2004. Capillary damage in skeletal muscle in advanced Chagas’ disease patients. Parasitology Research, 93, 364–368. http://dx.doi.org/10.1007/s00436-004-1107-7CrossrefGoogle Scholar

  • [149] Torrico F., Heremans H., Rivera M.T., Marck E. van, Billiau A., Carlier Y. 1991. Endogenous IFN-gamma is required for resistance to acute Trypanosoma cruzi infection in mice. Journal of Immunology, 146, 3626–3632. Google Scholar

  • [150] Tostes S.Jr., Bertulucci Rocha-Rodrigues D., Araujo Pereira G. de, Rodrigues V.Jr. 2005. Myocardiocyte apoptosis in heart failure in chronic Chagas’ disease. International Journal of Cardiology, 99, 233–237. http://dx.doi.org/10.1016/j.ijcard.2004.01.026CrossrefGoogle Scholar

  • [151] Vago A.R., Andrade L.O., Leite A.A., d’Avila Reis D., Macedo A.M., Adad S.J., Tostes S.Jr., Moreira M.C., Filho G.B., Pena S.D. 2000. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. American Journal of Pathology, 156, 1805–1809. CrossrefGoogle Scholar

  • [152] Vanderheyden M., Goethals M., Verstreken S., Bruyne B. de, Muller K., Schuerbeeck E. van, Bartunek J. 2004. Wall stress modulates brain natriuretic peptide production in pressure overload cardiomyopathy. Journal of the American College of Cardiology, 44, 2349–2354. http://dx.doi.org/10.1016/j.jacc.2004.09.038CrossrefGoogle Scholar

  • [153] Villalta F., Kierszenbaum F. 1984a. Role of inflammatory cells in Chagas’ disease. I. Uptake and mechanism of destruction of intracellular (amastigote) forms of Trypanosoma cruzi by human eosinophils. Journal of Immunology, 132, 2053–2058. Google Scholar

  • [154] Villalta F., Kierszenbaum F. 1984b. Role of inflammatory cells in Chagas’ disease. II. Interactions of mouse macrophages and human monocytes with intracellular forms of Trypanosoma cruzi: uptake and mechanism of destruction. Journal of Immunology, 133, 3338–3343. Google Scholar

  • [155] Villalta F., Kierszenbaum F. 1986. Effects of human colony-stimulating factor on the uptake and destruction of a pathogenic parasite (Trypanosoma cruzi) by human neutrophils. Journal of Immunology, 137, 1703–1707. Google Scholar

  • [156] Villalta F., Pankratz H.S., Kierszenbaum F. 1987. Extracellular killing of Trypanosoma cruzi amastigotes by human eosinophils. Journal of Protozoology, 34, 285–290. CrossrefGoogle Scholar

  • [157] Vyatkina G., Bhatia V., Gerstner A., Papaconstantinou J., Garg N. 2004. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development. Biochimica et Biophysica Acta, 1689, 162–173. CrossrefGoogle Scholar

  • [158] Wallace D.C. 2000. Mitochondrial defects in cardiomyopathy and neuromuscular disease. American Heart Journal, 139, S70–S85. http://dx.doi.org/10.1067/mhj.2000.103934CrossrefGoogle Scholar

  • [159] Wen J.J., Vyatkina G., Garg N. 2004. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radical Biology and Medicine, 37, 1821–1833. http://dx.doi.org/10.1016/j.freeradbiomed.2004.08.018CrossrefGoogle Scholar

  • [160] WHO (World Health Organization). 2002. Control of Chagas’ disease. Technical Report Series, WHO Publications, Geneva. Google Scholar

  • [161] Williams-Blangero S., VandeBerg J.L., Blangero J., Correa-Oliveira R. 2003. Genetic epidemiology of Trypanosoma cruzi infection and Chagas’ disease. Frontiers in Bioscience, 8, e337–e345. http://dx.doi.org/10.2741/1058CrossrefGoogle Scholar

  • [162] Witthaut R. 2004. Science review: natriuretic peptides in critical illness. Critical Care, London, 8, 342–349. http://dx.doi.org/10.1186/cc2890CrossrefGoogle Scholar

  • [163] Zacks M.A., Wen J.J., Vyatkina G., Bhatia V., Garg N. 2005. An overview of chagasic cardiomyopathy: pathogenic importance of the oxidative stress. Anais da Academia Brasileira de Ciências, 77, 695–715. Google Scholar

  • [164] Zhang J., Andrade Z.A., Yu Z.X. 1999. Apoptosis in a canine model of acute chagasic myocarditis. Journal of Molecular and Cellular Cardiology, 31, 581–596. http://dx.doi.org/10.1006/jmcc.1998.0893CrossrefGoogle Scholar

  • [165] Zhang L., Tarleton R.L. 1996. Persistent production of inflammatory and anti-inflammatory cytokines and associated MHC and adhesion molecule expression at the site of infection and disease in experimental Trypanosoma cruzi infections. Experimental Parasitology, 84, 203–213. http://dx.doi.org/10.1006/expr.1996.0106CrossrefGoogle Scholar

  • [166] Zingales B., Souto R.P., Mangia R., Lisboa C.V., Campbell D.A., Jansen A., Fernandes O. 1998. Molecular epidemiology of American trypanosomiasis in Brazil based on dimorphisms of rRNA and mini-exon gene sequences. International Journal for Parasitology, 28, 105–112. http://dx.doi.org/10.1016/S0020-7519(97)00178-1CrossrefGoogle Scholar

About the article

Published Online: 2007-03-01

Published in Print: 2007-03-01


Citation Information: Acta Parasitologica, Volume 52, Issue 1, Pages 1–12, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-006-0048-y.

Export Citation

© 2007 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fernando Ucan-Euan, Silvia Hernández-Betancourt, Madeleine Arjona-Torres, Alonso Panti-May, and Marco Torres-Castro
Biomédica, 2019, Volume 39, Number Supl. 2, Page 32
[2]
Maria Carmo Pereira Nunes, Andrea Beaton, Harry Acquatella, Caryn Bern, Ann F. Bolger, Luis E. Echeverría, Walderez O. Dutra, Joaquim Gascon, Carlos A. Morillo, Jamary Oliveira-Filho, Antonio Luiz Pinho Ribeiro, and Jose Antonio Marin-Neto
Circulation, 2018, Volume 138, Number 12
[3]
Gonzalo R. Acevedo, Magalí C. Girard, and Karina A. Gómez
Frontiers in Immunology, 2018, Volume 9
[4]
Mirtha Streiger, Mónica del Barco, Verónica Olivera, Diana L. Fabbro, Susana Denner, Maria Laura Bizai, Diego Mendicino, Iván Mancipar, Cristina Diez, Enrique Arias, and Oscar Bottasso
The American Journal of Tropical Medicine and Hygiene, 2011, Volume 84, Number 4, Page 575
[5]
Anis Rassi Jr, Anis Rassi, and José Antonio Marin-Neto
Memórias do Instituto Oswaldo Cruz, 2009, Volume 104, Number suppl 1, Page 152
[6]
J Antonio Marin-Neto, Anis Rassi Jr, Alvaro Avezum Jr, Antonio C Mattos, and Anis Rassi
Memórias do Instituto Oswaldo Cruz, 2009, Volume 104, Number suppl 1, Page 319
[7]
Barbara C. das Neves, Mey Lyn Bacilio, Lisbeth Berrueta, Siham Salmen, Darrell L. Peterson, Jose H. Donis, Tulio J. Nuñez, and Diego F. Davila
Revista do Instituto de Medicina Tropical de São Paulo, 2013, Volume 55, Number 1, Page 31
[9]
Ricardo E. Fretes and Ulrike Kemmerling
Journal of Tropical Medicine, 2012, Volume 2012, Page 1
[10]
Jose A. Marin-Neto and Anis Rassi
Revista Española de Cardiología (English Edition), 2009, Volume 62, Number 11, Page 1211
[11]
Herbert B. Tanowitz, Fabiana S. Machado, Linda A. Jelicks, Jamshid Shirani, Antonio C. Campos de Carvalho, David C. Spray, Stephen M. Factor, Louis V. Kirchhoff, and Louis M. Weiss
Progress in Cardiovascular Diseases, 2009, Volume 51, Number 6, Page 524
[12]
Jose A. Marin-Neto and Anis Rassi
Revista Española de Cardiología, 2009, Volume 62, Number 11, Page 1211
[13]
Shankar Mukherjee, Fnu Nagajyothi, Aparna Mukhopadhyay, Fabiana S. Machado, Thomas J. Belbin, Antonio Campos de Carvalho, Fangxia Guan, Chris Albanese, Linda A. Jelicks, Michael P. Lisanti, Joao S. Silva, David C. Spray, Louis M. Weiss, and Herbert B. Tanowitz
Genomics, 2008, Volume 91, Number 5, Page 423
[14]
Anis Rassi, Anis Rassi, and José Antonio Marin-Neto
The Lancet, 2010, Volume 375, Number 9723, Page 1388
[15]
Diego Castro, Lucia Boiani, Diego Benitez, Paola Hernández, Alicia Merlino, Carmen Gil, Claudio Olea-Azar, Mercedes González, Hugo Cerecetto, and Williams Porcal
European Journal of Medicinal Chemistry, 2009, Volume 44, Number 12, Page 5055
[16]
Shivali Gupta, Jian-Jun Wen, and Nisha Jain Garg
Interdisciplinary Perspectives on Infectious Diseases, 2009, Volume 2009, Page 1

Comments (0)

Please log in or register to comment.
Log in